ELECTRA 中文 预训练 ELECTREA 模型: 基于对抗学习 pretrain Chinese Model code Repost from google official code: 具体使用说明:参考 官方链接 Electra Chinese tiny模型路径 google drive electra-tiny baidu drive electra-tiny code:rs99 模型说明 与 tinyBERT 的 配置相同 generator 为 discriminator的 1/4 How to use official code Steps 修改 configure_pretraining.py 里面的 数据路径、tpu、gpu 配置 修改 model_size:可在 code/util/training_utils.py 里面 自行定义模型大小 数据输入格式:原始的
1
使用生成的专业网络对图像进行着色 ██████╗ ██████╗ ██╗ ██████╗ ██████╗ ██╗███████╗███████╗ ██╔════╝██╔═══██╗██║ ██╔═══██╗██╔══██╗██║╚══███╔╝██╔════╝ ██║ ██║ ██║██║ ██║ ██║██████╔╝██║ ███╔╝ █████╗ ██║ ██║ ██║██║ ██║ ██║██╔══██╗██║ ███╔╝ ██╔══╝ ╚██████╗╚██████╔╝███████╗╚██████╔╝██║ ██║██║███████╗███████╗ ╚═════╝ ╚═════╝ ╚══════╝ ╚═════╝ ╚═╝ ╚═╝╚═╝╚══════╝╚══════╝ 这是。 对于一些应用
1
甘伯特 论文代码GAN-BERT:具有健壮标签分类示例的生成式对抗性学习和一堆带标签的示例已在2020年ACL上发表-Danilo Croce (罗马大学Tor Vergata),朱塞佩·卡斯特鲁奇( Giuseppe Castellucci) (亚马逊)和Roberto Basili的短文(罗马大学的Tor Vergata)。该文件可以在找到。 GAN-BERT是BERT的扩展,它使用“生成对抗”设置来实现有效的半监督学习模式。它允许使用由有限数量的标记示例和未标记材料的较大子集组成的数据集训练BERT。 GAN-BERT可用于序列分类任务(也涉及对文本对)。 该代码在TREC数据集上运行GAN-BERT实验,以实现细粒度的“问题分类”任务。我们在此程序包中提供了代码和用于运行实验的数据,方法是使用2%的标记材料(109个示例)和5343个未标记的示例。测试集由500个带注释的示例组成
1
论文阅读笔记
2021-04-26 14:08:14 4.25MB 论文阅读笔记
1
PyTorch顾问实例 对CIFAR-10和MNIST的对抗攻击。 这些笔记本使用生成对抗示例,以攻击PyTorch模型。 将来可能会针对更多数据集提供更多方法。
2021-04-22 15:38:25 111KB pytorch mnist cifar-10 adversarial-examples
1
On the steerability of generative adversarial networks.pptx
2021-04-20 09:00:06 4.49MB 计算机视觉
1
SRGAN-张量流 介绍 该项目是的令人印象深刻的流实现。 从上的v5版按照相同的设置获得结果。 但是,由于资源有限,我在上训练我的网络,该包含8156张优质相机捕获的高分辨率图像。 如下面的结果所示,在不使用imagenet训练集的情况下,性能接近本文中提出的结果。 BSD100,Set14,Set5上的结果将在以后报告。 该代码受到极大启发。 一些结果: 我的实现和本文中一些结果的比较 输入项 我们的结果 SRGAN结果 原版的 输入项 我们的结果 SRGAN结果 原版的 依赖 python2.7 tensorflow(在r1.0,r1.2上测试) 从我的下载并提取预训练的模型 从
1
An Attention-Based Unsupervised Adversarial Model for Movie Review Spam Dete.pdf
2021-04-11 22:00:21 3.15MB 虚假评论
1
Connecting Generative Adversarial Network and Actor-Critic Methods.pdf
2021-04-09 17:12:20 125KB 强化学习 Actor-Critic GAN
1