TerraClimate全球0.041°的月尺度nc数据集,时间范围1958-2023年。基于该数据,本资源提供了基于矢量文件的批量裁剪与重投影。参考数据的下载见代码,可用记事本打开。 仅需修改备注部分即可
1
包含车辆数量 公路等级 道路类型 限速 交叉口 照明情况 天气情况 路面情况 伤亡数量 事故严重程度
2025-12-03 16:33:28 55KB 数据集 matlab python
1
matlab匹配滤波代码期末项目 年度项目-电子与通信工程(2013-2017) 该存储库包含用于频谱传感及其模拟的不同技术的matlab代码 提出了一种基于人工智能的决策技术,以集中频谱感知技术(在软结合技术中)在融合中心做出决策。在我们的工作中,我们分析了三种人工智能技术,例如ANN(人工神经网络),Fuzzy -逻辑,模糊神经网络(FNN)来决定通道的占用情况(通道状态)。 在这些FNN中,给出了有关频谱空缺的有效决策。 这些神经网络是根据诸如能量检测,匹配滤波器,PU与SU之间的距离,SNR,频谱效率等参数进行训练的。 在本文中,我们用GLRT组合代替了一种有效的频谱感知方案,即空间虚警,将其与GLRT相结合,以提高鲁棒性,恢复力并缩短感知间隔。 协作频谱感知技术用于减少噪声不确定性和隐藏节点问题,并在二级用户(SU)的虚警概率(PFA)和检测概率(PD)方面实现高性能。 模拟和结果 我们提出的方法的架构 所用技术的流程图 仿真结果 最终结果
2025-12-03 10:13:43 25.8MB 系统开源
1
在双抽汽轮机热电负荷协调控制问题的研究中,输出电负荷、抽汽高压热负荷和低压热负荷之间存在着严重的耦合关系,每个负荷的变化都会对其他负荷产生不同程度的影响,引起热、电负荷的频繁波动,从而影响到整个系统的控制性能.为了解决上述问题,提出了一种将简单的前馈补偿解耦和模糊神经网络相结合的改进多变量解耦控制方案.前馈补偿实现动静态解耦,神经网络实时调整模糊控制规则,从而提高了系统的控制效果和自适应能力.MATLAB仿真结果表明,改进的解耦控制方案解决了热电负荷的强耦合问题,提高了系统的鲁棒性和自适应能力,具有较强的
2025-12-02 16:58:53 1.11MB 工程技术 论文
1
内容概要:本文档是2024年由多家单位共同编制的关于AI技术与工业互联网融合发展及相关安全问题的详尽研究报告。主要内容涵盖AI+工业互联网的主要应用场景,探讨其带来的生产效率提升与企业竞争力的增强,也详细剖析了各个场景如工业制造、石油化工、矿山冶金和电力能源中存在的安全风险,以及针对这些风险提出的综合治理方案和技术实现细节。文中特别介绍了‘1266’架构——一种针对AI+工业互联网构建的安全体系架构。此外,文档还包括多个实际案例的研究,显示了具体技术实践及效果。 适合人群:工业领域的IT安全管理人员、技术专家及企业管理层。 使用场景及目标:为希望深入了解AI在工业互联网领域应用的个人和企业提供理论基础和实用参考;旨在通过介绍最新的安全技术和实践案例,帮助企业构建完整的工业互联网安全防护体系,确保系统稳定与数据安全。 其他说明:该文件还对未来发展方向做了简要讨论,强调政策支持、技术创新和社会责任共同推动AI技术在未来工业互联网安全领域的作用。建议读者紧跟最新政策导向,并积极参与到标准建设和自主研发中来,以促进该行业的健康发展。
2025-12-02 13:07:13 2.06MB 工业互联网 AI安全 网络攻防 风险评估
1
“基于金属纳米孔阵列的超表面全息显示技术研究:FDTD仿真与GS算法优化设计”,宽带全息超表面模型 金属纳米孔 fdtd仿真 复现lunwen:2018年博士lunwen:基于纳米孔阵列超表面的全息显示技术研究 lunwen介绍:单元结构为金属纳米孔阵列,通过调整纳米孔的转角调控几何相位,全息的计算由标量衍射理论实现,通过全息GS算法优化得到远场全息图像; 案例内容:主要包括金属纳米孔的单元结构仿真、几何相位和偏振转效率与转角的关系,全息相位的GS算法迭代计算方法,标量衍射计算重现全息的方法,以及超表面的模型建模和远场全息显示计算; 案例包括fdtd模型、fdtd建模脚本、Matlab计算相位GS算法的代码和标量衍射计算的代码,以及模型仿真复现结果,和一份word教程,宽带全息超表面的设计原理和GS算法的迭代过程具有可拓展性,可用于任意全息计算; ,关键词:宽带全息超表面模型; 金属纳米孔; fdtd仿真; 纳米孔阵列超表面; 全息显示技术; 标量衍射理论; GS算法迭代计算; 几何相位; 偏振转换效率; 超表面模型建模; 远场全息图像复现; fdtd模型; Matlab计算相位代
2025-12-01 23:05:16 1.49MB 数据结构
1
ECCV,全称为欧洲计算机视觉大会(European Conference on Computer Vision),是计算机视觉领域最顶级的国际会议之一,与CVPR、ICCV并称为全球三大CV盛会。2018年的ECCV会议聚集了全球顶尖的研究者和从业者,共同探讨计算机视觉领域的最新进展和未来趋势,其中包括一个重要方向——目标跟踪(Object Tracking)。 目标跟踪是计算机视觉中的核心问题,它涉及到图像处理、模式识别、机器学习等多个子领域。在2018年的ECCV会议上,众多研究者提交的论文聚焦于如何提升目标跟踪的准确性、鲁棒性和实时性,以适应日益复杂的视觉环境和应用场景。 目标跟踪的核心任务是找到视频序列中特定对象的位置和形状变化。这需要解决的关键问题包括初始化、目标表示、状态更新和漂移修正。2018年ECCV的论文可能涵盖了这些方面的创新方法,例如采用深度学习模型来改进目标表示,利用更高效的算法实现状态更新,以及提出新的漂移纠正策略。 深度学习在2018年前后已成为目标跟踪领域的主导技术。基于深度神经网络的跟踪方法,如Siamese网络、深度卷积网络(CNN)和循环神经网络(RNN),通过学习特征表示和动态模型,显著提升了跟踪性能。这些论文可能会讨论如何优化网络结构,以适应不同的跟踪场景和对象特性。 再者,应对复杂环境和动态变化,研究人员可能会提出新的适应性和鲁棒性策略。比如,一些论文可能会涉及在线学习,让跟踪器能够根据新观测到的数据自我调整;另一些可能关注多模态融合,结合颜色、纹理、运动等多种信息进行跟踪;还有可能探索对抗性训练,增强跟踪器对光照变化、遮挡、相似背景等干扰因素的抵抗力。 此外,实时性是目标跟踪在实际应用中不可或缺的要求。2018年ECCV的论文可能会介绍如何在保持高精度的同时提高计算效率,例如通过轻量级网络设计、模型量化和硬件优化等手段。 压缩包中可能包含的代码资源,对于理解这些先进方法的实际工作原理和实现细节至关重要。它们可以作为学习和进一步研究的基础,帮助开发者和研究者快速复现结果,或者启发新的研究思路。 2018年ECCV的目标跟踪论文和代码资源代表了当时该领域的前沿技术,涵盖了深度学习、模型优化、鲁棒性增强等多个方面,对于深入理解和提升目标跟踪技术具有极大的价值。通过深入研读这些论文,我们可以洞见计算机视觉的发展脉络,为未来的创新提供灵感。
2025-12-01 21:13:07 22.12MB ECCV object track
1
在当今信息化时代,通信工程作为技术进步的重要推动力,成为了众多高校教育的重点。北京邮电大学作为一所专业性的高等学府,在通信领域有着深厚的教学与研究底蕴。本次实验报告以“2023年北邮通信工程场强仪实验报告”为题,涉及了《电磁场试验》课程中关于校园内无线信号场强特性研究的详细内容。报告内容不仅包括了实验目的、原理、设备、内容、环节以及结论和心得体会,而且还着重探讨了无线信号在实际校园环境中的传播特性。 实验原理部分,报告详细阐述了无线信号传播中的大尺度途径损耗、阴影衰落和建筑物的穿透损耗等关键因素。这些因素共同作用于无线信号,在不同环境下对信号强度造成影响。其中大尺度途径损耗反映了信号在自由空间传播过程中由于距离增大而引起的衰减。阴影衰落描述了由于地形、建筑物等障碍物遮挡造成的信号强度随机变化现象。而建筑物穿透损耗则关注了无线信号穿越墙体等障碍物时所遭受的衰减。了解这些原理对于在实际环境中设计无线通信网络,提高通信质量有着重要的意义。 报告还介绍了用于测量无线信号场强的专业设备——场强仪,以及其在实验中的应用。场强仪是评估无线网络覆盖质量的重要工具,它能测量无线信号的强度并提供可靠的数据,为后续的数据处理和分析提供了基础。 在实验内容和环节方面,报告涵盖了选择测量地点和频率、进行实际测量、数据录入、处理与分析的全过程。通过对校园内不同地点无线信号强度的测量,能够直观反映出电磁场的分布情况,并结合相应的数据分析,可以对实验结果进行科学解释。数据处理和分析是整个实验过程的关键,它通过数学模型和计算方法,将原始测量数据转化为具有实际意义的信息,帮助理解无线信号场强与环境因素之间的关系。 报告的最后部分,作者对于整个实验过程进行了总结,并分享了个人的心得体会。通过这一环节,不仅能检验学生对于课程知识的掌握程度,还有助于培养其独立思考和实际操作的能力,对于学生综合能力的提升具有积极影响。 实验报告不仅仅是一份简单的记录,它更是通信工程教育和研究的缩影。通过对无线信号场强特性的研究,学生能够将理论知识与实践相结合,加深对通信原理的理解,并为未来从事相关领域的工作打下坚实的基础。
2025-12-01 13:09:18 1.84MB
1
单片机实验报告是南昌大学学生进行单片机课程实验的详细记录文档,通常包括实验目的、实验内容、实验步骤、实验程序和实验结果分析等关键部分。以下根据提供的内容生成的相关知识点: ### 实验一:I/O口输入输出实验 #### 实验目的 掌握单片机P1口和P3口的使用方法。 #### 实验内容 实验一的主要内容是通过P1口控制八位逻辑电平LED灯显示跑马灯效果,并通过P3口控制跑马灯的方向。具体为P1口输出信号控制LED灯的显示状态,P3口输入信号决定跑马灯的运行方向。 #### 实验程序 - 系统设置:将P1口连接到八位逻辑电平显示模块,P3口连接到八位逻辑电平输出模块。 - 程序设计:编写程序代码,在指定的单片机开发环境下编译无误后下载至单片机进行调试。 - 跑马灯效果观察:编译并下载程序后,观察LED灯的显示效果,并通过拨动开关改变跑马灯的方向。 #### 实验步骤 1. 系统跳线器设置为初始状态。 2. 连接硬件:P3.0口连接至CPU模块的RXD,P1口连接至八位逻辑电平显示模块。 3. 启动PC机和THGMW-51软件,输入并编译源程序,无误后下载程序到单片机。 4. 运行程序,观察LED灯显示跑马灯效果,并通过拨动开关改变方向。 #### 实验成果分析 程序通过查询方式检测P3.0口的状态,根据输入状态控制P1口的输出,实现流水灯效果。P3.0口为高电平时,LED灯从左到右循环点亮;P3.0口为低电平时,LED灯从右到左循环点亮。 ### 实验二:外部中断实验 #### 实验目的 学习外部中断技术的基本使用方法。 #### 实验内容 通过INT0端接收单次脉冲信号,并在中断服务程序中使P1.0口状态反转,从而控制LED灯的状态。 #### 实验程序 - 系统设置:将单次脉冲模块的输出端连接到CPU模块的P32,P10口连接到LED灯。 - 程序设计:编写中断服务程序,响应外部中断,并改变LED灯的状态。 - 中断响应观察:编译并下载程序后,观察每次按下脉冲产生电路按键时LED灯的状态变化。 #### 实验步骤 1. 系统跳线器设置为初始状态,连接硬件。 2. 启动PC机和THGMW-51软件,输入并编译源程序,无误后下载程序到单片机。 3. 运行程序,按动单次脉冲产生电路的按键,观察LED灯每次按下的状态变化。 #### 实验成果分析 每次按下按键都会触发一次外部中断,导致CPU执行中断服务程序,P1.0口状态反转,从而使LED灯状态变化。 #### 实验结论 通过两个实验,学生可以深入理解单片机I/O口的使用和外部中断的响应过程,为后续的单片机应用和开发打下良好的基础。
2025-11-30 20:56:32 111KB
1
MEMS射频器件,特别是超宽带器件,对其中的射频器件提出了宽带指标的要求。以此为背景,在理论分析的基础上设计了一种应用于12.5 GHz~50 GHz频带的超宽带双膜桥式MEMS开关,该开关具备低损耗、高隔离度等特点,文中给出了开关的制备工艺,并进行流水完成了芯片制备。经测试,该开关在设计频段内,回波损耗优于20 dB,插入损耗典型值0.3 dB @12.5~35 GHz,优于0.5 dB@45 GHz,隔离度全频段优于20 dB,驱动电压在45 V~55 V之间。
2025-11-28 16:08:02 1018KB 工程技术 论文
1