使用长短期记忆模型(LSTM)预测股票
2021-11-19 17:06:10 38.09MB LSTM 预测股票 机器学习
1
基于深度学习的方面情感分析是自然语言处理的热点之一。针对方面情感,提出基于方面情感分析的深度分层注意力网络模型。该模型通过区域卷积神经网络保留文本局部特征和不同句子时序关系,利用改进的分层长短期记忆网络(LSTM)获取句子内部和句子间的情感特征。其中,针对LSTM添加了特定方面信息,并设计了一个动态控制链,改进了传统的LSTM。在SemEval 2014的两个数据集和Twitter数据集上进行对比实验得出,相比传统模型,提出的模型的情感分类准确率提高了3%左右。
1
命名实体识别是自然语言处理的一项关键技术. 基于深度学习的方法已被广泛应用到中文实体识别研究中. 大多数深度学习模型的预处理主要注重词和字符的特征抽取, 却忽略词上下文的语义信息, 使其无法表征一词多义, 因而实体识别性能有待进一步提高. 为解决该问题, 本文提出了一种基于BERT-BiLSTM-CRF模型的研究方法. 首先通过BERT模型预处理生成基于上下文信息的词向量, 其次将训练出来的词向量输入BiLSTM-CRF模型做进一步训练处理. 实验结果表明, 该模型在MSRA语料和人民日报语料库上都达到相当不错的结果, F1值分别为94.65%和95.67%.
1
很好的描述了如何将人工智能之循环神经网络运用于金融之股票市场的预测,包括特征处理,标准化,结论,与传统机器学习的效果进行比较
2021-10-28 17:49:35 8.06MB lstm 预测 深度学习
1
这是在深度学习工具箱中使用长短期记忆(LSTM)网络在接收器处实现符号分类以在OFDM系统中进行信号检测的示例。 基于 LSTM 的神经网络针对单个子载波进行训练,其中符号错误率 (SER) 被计算并与最小二乘 (LS) 和最小均方误差 (MMSE) 估计进行比较。 在此初步调查中,假设无线信道在离线训练和在线部署阶段是固定的。 为了测试神经网络的鲁棒性,对每个传输的 OFDM 数据包应用随机相移。 考虑了导频符号数量和循环前缀(CP)长度的影响。 要重新创建仿真结果,请加载相应的Mat文件并运行脚本Testing.m。 这段代码的想法受到论文的启发: H. Ye、GY Li 和 B. Juang,“OFDM 系统中信道估计和信号检测深度学习的力量”,IEEE 无线通信快报,第一卷。 7号1,第 114-117 页,2018 年 2 月。
2021-10-28 15:47:03 978KB matlab
1
在Anaconda Jupyter Noteboo下实现的基于长短期记忆网络(LSTM)的手写体数字识别(ipynb文件格式)
2021-10-14 16:17:03 14KB python lstm 深度学习
1
LSTM(Long Short-Term Memory)是长短期记忆网络,是一种时间递归神经网络,适合于处理和预测时间序列中间隔和延迟相对较长的重要事件。 LSTM 已经在科技领域有了多种应用。基于 LSTM 的系统可以学习翻译语言、控制机器人、图像分析、文档摘要、语音识别图像识别、手写识别、控制聊天机器人、预测疾病、点击率和股票、合成音乐等等任务。本文档是基于LSTM原理的简单实现,有助于理解其原理。
2021-10-06 16:27:31 2KB Deep Learnin LSTM
1
本代码利用长短期记忆神经网络(LSTM)进行文本分类,支持中英文文本分类,简单易上手,有相应视频教程介绍使用方法。
行业分类-物理装置-一种基于双向长短期记忆网络的定位修正方法.zip
本文将传统的机器学习模型(即支持向量机,k最近邻,决策树和随机森林)与前馈神经网络和长短期记忆进行了比较。 我们观察到两个神经网络比传统模型具有更高的精度。 本文还试图弄清辍学是否可以提高神经网络的准确性。 我们观察到,对于前馈神经网络,在某些情况下应用辍学可能会导致更好的性能,而在其他情况下则会导致更差的性能。 辍学对LSTM模型的影响很小。 因此,使用辍学不能保证更高的准确性。
1