# 基于ROS和YOLO的相机与激光雷达融合检测系统 ## 项目简介 本项目是一个基于ROS(Robot Operating System)和YOLO(You Only Look Once)深度学习算法的相机与激光雷达融合检测系统。该系统通过联合标定相机和激光雷达,实现对环境中的物体进行精确检测和定位。主要应用于自动驾驶、机器人导航等领域。 ## 项目的主要特性和功能 1. 相机与激光雷达联合标定 相机内参标定使用棋盘格标定板进行相机内参标定,获取相机的内参矩阵和畸变参数。 相机与激光雷达外参标定通过Autoware工具进行外参标定,获取相机与激光雷达之间的外参矩阵。 2. 物体检测与点云融合 使用YOLO v3算法检测相机图像中的车辆目标。 通过外参矩阵将检测到的目标边界框投影到激光雷达坐标系下,实现点云与图像的融合。 在RVIZ中显示融合后的检测结果,绿色框标记出车辆点云。 3. ROS集成
2025-04-11 16:28:07 4.82MB
1
内容概要:本文详细介绍了将A*算法与动态窗口法(DWA)相结合用于路径规划的方法及其优化。首先,针对传统A*算法在动态环境中表现不佳的问题,作者提出了一系列改进措施,如优化节点选择策略、删除冗余节点以及引入地形系数等。接着,在A*生成的全局路径基础上,利用DWA进行局部路径规划,确保机器人能够灵活应对突发的动态障碍。此外,文中还讨论了算法融合过程中可能遇到的问题及解决方案,并展示了具体的MATLAB代码片段。实验结果显示,改进后的混合算法不仅提高了路径规划效率,而且增强了机器人的避障能力和灵活性。 适合人群:从事机器人导航研究的技术人员、高校相关专业师生。 使用场景及目标:适用于需要高效路径规划和动态避障的应用场合,如智能仓储物流、无人驾驶车辆等领域。目的是提高机器人在未知或变化环境中的自主行动能力。 其他说明:文中提供的代码为简化版本,具体应用时还需根据实际情况调整参数设置并完善功能模块。
2025-04-11 09:27:29 806KB
1
基于STM32单片机控制的智能扫地机器人仿真系统设计与实现:融合超声波、红外线避障,MPU6050角度测量,OLED显示与电机驱动模块的协同应用,基于STM32单片机控制的智能扫地机器人仿真系统设计与实现:集成超声波、红外线避障、MPU6050角度传感器、OLED显示及电机驱动模块等多功能应用,基于STM32单片机扫地机器人仿真系统设计 1、使用 STM32 单片机作为核心控制器; 2、选择超声波(1个)、红外线(两个,放在左右)两种传感器进行有效地避障; 3、使用角度传感器 MPU6050 测量角度,检测扫地机器人的运动状态,是否有倾倒; 4、OLED 屏显示超声波距离和角度; 5、通过电机驱动模块驱动电机使轮子运转: 6、电源模块为控制系统供电; 7、串口模拟蓝牙,打印显示器现实的内容; 8、使用继电器驱动风机、风扇实现模拟扫地、吸尘的功能。 ,核心关键词:STM32单片机; 避障传感器(超声波、红外线); 角度传感器MPU6050; OLED屏显示; 电机驱动模块; 电源模块; 串口模拟蓝牙; 继电器驱动风机风扇。,基于STM32单片机的扫地机器人仿真系统设计:多传感器融合控制与
2025-04-07 10:51:44 2.69MB kind
1
"FSDAF遥感影像时空融合 python代码"涉及的是遥感图像处理领域中的一个重要技术——时空融合。在遥感数据处理中,时空融合是将不同时间或空间分辨率的遥感影像进行综合,以获取更高精度和更丰富的信息。这种技术常用于气候变化监测、土地覆盖变化分析、城市规划等领域。 "FSDAF遥感影像时空融合 python代码"表明这是一个使用Python编程语言实现的时空融合算法。Python因其强大的库支持和易读性,在遥感数据分析和图像处理中广泛应用。该代码可能包含了从数据预处理到融合过程的完整流程,包括数据导入、预处理、特征提取、融合算法实现以及结果可视化等步骤。 1. **Python开发语言**:Python是一种高级通用型编程语言,因其简洁明了的语法和丰富的第三方库,尤其适合进行科学计算和数据分析,包括遥感影像处理。 2. **后端**:尽管通常遥感影像处理更多地被认为属于前端或数据科学范畴,但这里提到“后端”,可能是指该代码集成了服务器端的功能,如数据存储、计算资源管理等。 3. **时空融合**:这是遥感图像处理的关键技术,通过结合多时相或多源遥感图像,提高图像的空间和时间分辨率,以获得更准确的信息。 在Python中实现时空融合,可能用到的库包括: - **GDAL/OGR**:用于遥感数据的读取和写入,支持多种遥感数据格式。 - **Numpy**:提供高效的数组操作,用于处理遥感图像的像素数据。 - **Pandas**:用于数据管理和分析,可能用于预处理阶段的数据清洗和整理。 - **Scikit-image**或**OpenCV**:提供图像处理功能,如滤波、特征提取等。 - **Matplotlib**或**Seaborn**:用于数据可视化,展示融合前后的图像对比。 具体到FSDAF(可能是某种特定的时空融合算法),其全称未给出,可能是一种自适应的融合方法,根据图像特性自动调整融合策略。该算法可能涉及到的步骤包括: 1. **数据预处理**:校正、重采样、裁剪等,确保不同源的遥感数据在空间和时间上对齐。 2. **特征提取**:可能通过统计分析、边缘检测等方法,提取遥感图像的关键信息。 3. **融合策略**:基于FSDAF算法,融合不同时间或空间分辨率的图像,生成新的高分辨率图像。 4. **评估与优化**:使用评价指标如信息熵、均方根误差等,评估融合效果,并可能进行参数调整优化。 5. **结果输出与展示**:将融合后的图像保存并用图形化工具展示,以便进一步分析。 这个项目是一个使用Python实现的遥感影像时空融合应用,涵盖了数据处理、算法实现和结果可视化等多个环节,对于学习和实践遥感图像处理具有很高的价值。
2025-03-30 10:33:21 7.72MB python 开发语言 时空融合
1
融合多策略灰狼优化算法:源码详解与性能优越的学习资料,原创改进算法,包括混沌初始化、非线性控制参数及自适应更新权重等策略,融合多策略改进灰狼优化算法:源码详解与深度学习资料,高效性能与原创算法技术,融合多策略的灰狼优化算法 性能优越 原创改进算法 源码+详细注释(方便学习)以及千字理论学习资料 改进策略:改进的tent混沌初始化,非线性控制参数,改进的头狼更新策略,自适应更新权重 ,融合灰狼优化算法; 性能优越; 原创改进算法; 改进策略; 详细注释; 理论学习资料,原创灰狼优化算法:融合多策略、性能卓越的改进版
2025-03-26 17:04:42 1.01MB ajax
1
【图像融合】基于matlab小波变换(加权平均法+局域能量+区域方差匹配)图像融合【含Matlab源码 1819期】.md
2024-11-30 17:05:13 9KB
1
HypeLCNN概述 该存储库包含论文“具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架”的论文源代码(正在审查中) 使用Tensorflow 1.x开发(在1.10至1.15版上测试)。 该存储库包括一套完整的套件,用于基于神经网络的高光谱和激光雷达分类。 主要特点: 支持超参数估计 基于插件的神经网络实现(通过NNModel接口) 基于插件的数据集集成(通过DataLoader接口) 培训的数据有效实现(基于内存的有效/基于内存/记录的) 能够在经典机器学习方法中使用数据集集成 神经网络的培训,分类和指标集成 胶囊网络和神经网络的示例实现 基于CPU / GPU / TPU(进行中)的培训 基于GAN的数据增强器集成 交叉折叠验证支持 源代码可用于在训练大数据集中应用张量流,集成指标,合并两个不同的神经网络以进行数据增强的最佳实践 注意:数据集文件太
2024-10-09 21:46:44 128KB deep-neural-networks tensorflow fusion lidar
1
台区智能融合终端通用技术规范 2022 1、包含APP开发 2、该文档与以前的规范有很大区别,包含外观等 3、适合对配网比较了解的小伙伴 4、TTU
2024-10-02 09:48:26 18.33MB 智能融合终端 国家电网
1
使用Python实现了大部分图像融合评估指标,包括 信息熵(EN),空间频率(SF),标准差(SD),峰值信噪比(PSNR),均方误差(MSE),互信息(MI),视觉保真度(VIF),平均梯度(AG),相关系数(CC),差异相关和(SCD),基于梯度的融合性能(Qabf),结构相似度测量(SSIM),多尺度结构相似度测量(MS-SSIM),基于噪声评估的融合性能(Nabf)。支持评估单幅图像,单个算法的所有融合结果,以及所有直接计算所有对比算法的结果,同时支持写入excel。
2024-09-18 14:43:09 122.44MB python
1
针对语音情感信号的复杂性和单一分类器识别的局限性,提出一种核函数极限学习机(KELM)决策融合的方法用于语音情感识别。首先对语音信号提取不同的特征,并训练相应的基分类器,同时将输出转化为概率型输出;然后利用测试集在基分类器的输出概率值计算自适应动态权值;最后对各基分类器的输出进行线性加权融合得到最终的分类结果。利用该方法对柏林语音库中4种情感进行识别,实验结果表明,提出的融合KELM方法优于常用的单分类器以及多分类器融合方法,有效地提高了语音情感识别系统的性能。
2024-09-14 12:07:28 422KB 语音情感识别
1