为多变量时间序列开发多通道深度卷积神经网络
2021-07-01 09:40:53 2MB 研究论文
1
深度卷积神经网络的发展及其在计算机视觉领域的应用
2021-06-03 14:02:03 9.16MB 神经网络 计算机视觉 深度学习
1
在磁共振(MR)图像中对前列腺的自动分割已越来越多地应用于前列腺疾病的诊断和各种临床应用。 然而,由于前列腺边界周围的解剖结构不均匀且变化,因此前列腺MR图像的分割面临着巨大的挑战。 由于深度学习在计算机视觉中显示出优异的性能,因此我们提出了一种使用深度神经网络的粗细细分策略,以分别解决直肠内线圈前列腺图像和非直肠内线圈前列腺图像的分割问题。 首先,我们将基于配准的粗略分割呈现给预处理的前列腺MR图像,以获得潜在的边界区域。 其次,我们训练深度神经网络作为基于像素的分类器,以预测潜在边界区域中的像素是否为前列腺像素。 为了提高算法的可分辨性,我们进一步引入了集成学习以进行精细分割。 最后,使用边界细化来消除离群值并使边界平滑。 所提出的方法已经在PROMIS12挑战数据集和PROSTATEx17挑战数据集上得到了广泛的评估。 实验结果表明,该算法具有较好的分割性能(骰子比为0.910±0.036,平均边界距离为1.583±0.441,Hausdorff距离为4.579±1.791),证明了该算法的有效性。
2021-05-30 11:23:22 896KB MRI prostate segmentation; Deep
1
提出了一种基于深度卷积神经网络估算大气湍流折射率结构常数 Cn2的方法。将湍流影响下的高斯光束光斑图像作为神经网络的输入,利用深度卷积神经网络提取图像的特征信息,得到 Cn2大小,并采用平均绝对误差、平均相对误差、均方根方差和相关系数四个统计量来衡量模型的估算效果。结果表明,该模型能够根据湍流影响下的高斯光束光斑图像对 Cn2进行估算,当迭代500次时,相关系数为99.84%,各项误差均在2%左右。该模型在大气湍流特性分析及大气湍流强度估算等领域有一定应用价值。
2021-05-26 19:36:47 11.51MB 大气光学 大气湍流 折射率结 深度卷积
1
(MDNet代码)深度卷积神经网络目标跟踪(matlab代码)
2021-05-15 09:01:53 129.64MB 目标跟踪神经网络
1
提出一种将卷积神经网络(CNN)学习特征与传统影像学特征结合的肺结节良恶性鉴别方法。首先,从电子计算机断层扫描(CT)图像中分割出肺结节区域,并使用传统机器学习方法提取结节区域的影像学特征;然后,使用截取的肺结节训练3D-Inception-ResNet模型,提取网络学习的CNN特征,组合两类特征,并利用随机森林(RF)模型进行特征选择;最后,采用支持向量机(SVM)、RF等传统分类器对肺结节进行良恶性鉴别诊断。使用LIDC-IDRI数据库中的1036个肺结节进行实验验证,最终所提方法的分类准确率、敏感度、特异度及接受者操作特性曲线(ROC)下面积(AUC)分别达94.98%、90.02%、97.03%及97.43%。实验结果表明,所提方法能准确地判别肺结节的良恶性,并优于大部分主流方法。
2021-05-11 19:24:52 4.64MB 图像处理 肺癌早期 CT影像 肺结节良
1
基于深度卷积神经网络的图像分类算法
2021-04-30 08:09:42 767KB 人工智能
1
行人检测一直是目标检测研究与应用中的热点。目前行人检测主要通过设计有效的特征提取方法建立对行人特征的描述,然后利用分类器实现二分类。卷积神经网络作为深度学习的重要组成,在图像、语音等领域得到了成功应用。针对人工设计的特征提取方法难以有效表达复杂环境下行人特征的问题,提出采用多层网络构建深度卷积神经网络实现对行人检测的方法。系统分析了卷积神经网络层数、卷积核大小、特征维数等对识别效果的影响,优化了网络参数。实验结果表明该方法对于行人检测具有很高的识别率,优于传统方法。
2021-04-08 16:34:16 628KB 论文研究
1
利用深度卷积神经网络对图像进行分类 1_Alex_《ImageNet Classification with Deep Convolutional Neural Networks》2012
2021-04-06 22:12:27 1.33MB ImageN 深度卷积神经
1
【技术报告】深度卷积神经网络的计算机视觉分类法 TECHNOLOGY REPORT A Taxonomy of Deep Convolutional Neural Nets for Computer Vision Suraj Srinivas