本资源为机器学习实战的所有源代码。包含的内容有使用k-近邻算法改进约会网站的配对效果、使用k-近邻算法识别手写数字、使用决策树预测隐形眼镜类型、使用朴素贝叶斯过滤垃圾邮件、从疝气病症预测病马的死亡率、SVM手写识别问题回顾、利用AdaBoost元算法提高分类、线性回归预测鲍鱼的年龄、岭回归预测乐高玩具套装的价格、树回归、K-means对地理坐标进行聚类、Apriori算法发现毒蘑菇的相似特征、FP-growth算法从新闻网站点击流中挖掘、PCA对半导体制造数据降维、SVD基于协同过滤的推荐引擎、分布式SVM的Pegasos算法、用mrjob实现MapReduce版本的SVM。’
2022-04-30 13:06:16 12.72MB 机器学习 决策树 回归 支持向量机
面向语义的文本分类是指在给定的分类体系下,根据文本的内容自动识别文本类别的过程。是一种基于朴素贝叶斯算法的分类技术应用与中文短文本分类。
2022-04-29 14:58:40 714KB 短文本 分类 朴素贝叶斯
1
贝叶斯分类算法是统计学的一种概率分类方法,朴素贝叶斯分类是贝叶斯分类中最简单的一种。其分类原理就是利 用贝叶斯公式根据某特征的先验概率计算出其后验概率,然后选择具有最大后验概率的类作为该特征所属的类。之所以称之为”朴素”,是因为贝叶斯分类只做最原始、最简单的假设:所有的特征之间是统计独立的。 朴素贝叶斯法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法。 最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier 或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响
2022-04-27 16:05:48 1.46MB 算法 机器学习 数据结构 人工智能
1
朴素贝叶斯算法学习笔记。
2022-04-27 15:01:54 24KB 朴素贝叶斯 算法
1
文本分类,使用机器学习算法,如朴素贝叶斯、逻辑回归、支持向量机等
2022-04-27 11:05:47 204KB 算法 机器学习 分类 逻辑回归
COVID风险预测 使用朴素贝叶斯和决策树算法进行COVID-19风险预测
2022-04-22 20:14:15 851KB HTML
1
提出了一种利用支持向量机改进的朴素贝叶斯算法——TSVM-NB算法。首先利用NB算法对样本集进行初次训练,利用支持向量机构造一个最优分类超平面,每个样本根据与其距离最近样本的类型是否相同进行取舍,这样既降低样本空间规模,又提高每个样本类别的独立性,最后再次用朴素贝叶斯算法训练样本集从而生成分类模型。仿真实验结果表明,该算法在样本空间进行取舍过程当中消除了冗余属性,可以快速得到分类特征子集,提高了垃圾邮件过滤的分类速度、召回率和正确率。
1
在学习《数据科学导引》第四章分类算法——决策树及朴素贝叶斯时可以参考本课件,基本原理通俗易懂,并举了相关例子,在决策树剪枝部分对课本内容做了补充,有兴趣可以翻阅。 汇报前查阅了很多相关资料,进行了整合和总结,如果有不甚清晰的地方可以私聊探讨,本人在课堂上对本部分做讲解的时候收到了很好的反响。 如果有不同的见解及学习方法,欢迎在评论区留言提问或提出建议。
2022-04-21 13:05:16 36.82MB 决策树 机器学习 朴素贝叶斯算法
1
朴素贝叶斯数字分类器 基于平均像素亮度和标准偏差的手写数字0或1的朴素贝叶斯分类器 2020年9月 ASU MCS计划课程CSE 575的项目1-统计机器学习 使用的技术: Python,Numpy,Scipy
2022-04-18 20:33:56 129KB Python
1
1、内容概要:本资源主要基朴素贝叶斯算法实现垃圾邮件过滤分类,适用于初学者学习文本分类使用。 2、主要内容:邮件数据集email,email文件夹下有两个文件夹ham和spam,其中ham文件夹下的txt文件为正常邮件,spam文件下的txt文件为垃圾邮件;停用词文件stopwords_cn.txt;Naive_Bay.py 朴素贝叶斯算法实现源码;Email_NB.py垃圾邮件分类实现源码。