深入了解消费者购买行为异质性的一种广泛使用的方法是市场细分。 传统的市场细分模型常常忽略消费者行为可能随时间演变的事实。 因此,零售商消耗有限的资源试图为无利可图的消费者提供服务。 本研究调查了科威特国一家中型零售商的增强新近度、频率、货币 (RFM) 分数和消费者终身价值 (CLV) 矩阵之间的整合。 修改后的回归算法调查消费者购买趋势,从销售点数据仓库中获取知识。 此外,本研究应用增强正态分布公式去除异常值,然后采用软聚类模糊 C 均值和硬聚类期望最大化 (EM) 算法对消费者购买行为进行分析。 使用集群质量评估表明,EM 算法的扩展性比模糊 C 均值算法好得多,因为它能够在较小的数据集中分配良好的初始点
1