超低纹波、精密电源模块 芯片LM27762 提供 ±1.5V 至 ±5V 可调节、超低噪声正负输出。输入电压范围为 2.7V 至 5.5V,输出电流高达 ±250mA。LM27762 的工作电流仅为 390µA并且关断电流的典型值为 0.5µA,因此可为功率放大器、数模转换器 (DAC) 偏置以及其他大电流、低噪声、负电压应用提供理想性能。该器件采用小型解决方案尺寸,所需外部组件很少。 负电压由经过稳压的反相电荷泵生成,该电荷泵紧接一个低噪声、负电压 LDO。LM27762 器件的反相电荷泵在 2MHz(典型值)开关频率下运行,可减少输出阻抗和电压纹波。正电压由低噪声正电压 LDO 的输入生成。 LM27762 的正负电压输出配有专用使能输入。为满足特定的系统电源排序需要,这些输出支持独立的正负电源轨时序。使能输入也可短接在一起并与输入电压相连。LM27762 具有可选的电源正常功能。
2025-10-08 20:06:17 4.8MB 超低纹波 低EMI
1
伺服电机旋转变压器型编码器调零大全:轻松学习各种品牌伺服设计与调零方法,关于旋转编码器型伺服电机的调零方法与原理解析:适用于西门子等进口品牌,轻松学习与实践应用,旋转变压器型编码器旋编调零协议型编码器调零 对于各种进口品牌伺服电机都可以如:西门子,力士乐,abb,keb,多摩川,法那科,伦兹等所有的最新私有协议或接口的都支持 所有旋编调零方法拿了就学会伺服驱动原理 伺服设计工程师亲自讲解,旋转编码器调零 用极简单的实验与易于理解的讲活让你轻松弄懂伺服原理,有兴趣甚至能设计出伺服 一共有6种方法.我的硬件是其中一种,可以不用我的硬件利用你自己现有硬件 最好准备一台任意品牌伺服电机不限编码器类型不限编码器好坏,无编码器也行,一台直流电源通过极简单实验把你带入复杂的伺服运行原 理 以上方法囊括了所有伺服电机的调零希望大家能学会 曾经我不会的时候想学习,很迷茫。 想找很多人学,但是苦于找不到对应的人,也没人愿意花时间教我。 即使我花了大量的时间去研究原理设计,终于一天我理解了,所以我想让很多想学的人更快的学会。 毫不夸张的说其价值远在2000美元以上,所有文字资料均自行编写
2025-10-08 17:21:35 7.42MB
1
恒流源电路是一种重要的电子电路,它能保持输出电流的恒定,不随负载或电源电压的变化而变化。这种特性在许多电子设备中都极为关键,例如在模拟电路设计、LED驱动器、电源管理以及传感器等领域都有广泛应用。下面将详细阐述恒流源的工作原理和几种常见的实现方式。 基本电流镜结构是恒流源的基础,它基于电流复制的原理。当两个工艺参数相同的MOSFET(金属-氧化物-半导体场效应晶体管)在饱和区工作时,如果它们的栅源电压相同,那么它们的漏极电流也会相等。然而,由于沟道调制效应,当漏源电压VDS不一致时,即使栅源电压相同,电流也会不同。为了克服这个问题,可以通过调整MOSFET的宽长比来设计出与参考电流成比例的输出电流,这就是比例电流镜的工作原理。但这种方法无法提供真正的恒流源,因为VDS2的变化会影响输出电流Io。 为了改善电流镜的恒流特性,通常有两种方法:一是尽量减少或消除M2的沟道调制效应,可以通过增加M2的沟道长度来提高输出阻抗;二是设置VDS2等于VDS1,使得Io只与M1和M2的宽长比有关,从而实现更好的恒流特性。在实际应用中,尤其是在小特征尺寸的CMOS工艺中,通常会采用第二种方法来设计恒流源电路。 威尔逊电流源是另一种改进的恒流源结构,它利用负反馈来提高输出阻抗,以增强恒流特性。在这个电路中,通过M3形成负反馈,使得VDS1>VGS1,保证M1始终工作在饱和区。由于VDS2和VDS1之间的关系,输出电流Io与参考电流IR不仅与M1、M2的尺寸有关,还取决于VGS2和VGS3的值。通过交流小信号等效电路分析,可以计算出电路的输出阻抗,进一步优化恒流特性。威尔逊电流源的优点是只需要三个MOS管,结构相对简洁,同时适用于亚阈值区。 然而,即使是威尔逊电流源,其M3和M2的漏源电压仍然不相等,因此有一种改进型的威尔逊电流源,引入了二极管连接的MOS管M4。通过设定VGS3=VGS4,可以使VDS1=VDS2,从而消除沟道调制效应,提高恒流精度。这种结构只需要四个MOS管,适合于对精度要求较高的应用。 共源共栅电流源是一种高输出阻抗的恒流源,其特点是使用共源共栅结构来确保VDS2=VDS1,从而改善恒流特性。通过适当选择M3和M4的尺寸,使得VGS3=VGS4,这样整个电路就能实现恒定的输出电流。这种结构在需要高精度和高输出阻抗的场合非常有用。 总结起来,恒流源电路的设计和优化是一个复杂的过程,涉及到MOSFET的沟道调制效应、负反馈机制以及电路的尺寸匹配。通过这些方法,我们可以设计出各种具有不同特性的恒流源,以满足不同应用场景的需求。
2025-10-08 17:07:27 503KB 恒流源电路
1
内容概要:本文介绍了双绞线的制作与测试方法。通过了解双绞线的工作原理及其分类、RJ-45连接器的标准和线序排列标准等,读者可以学习到如何制作直通线、交叉线和全反线,并利用测线仪测试线缆是否正常连接以及判断线序错误或短路断路等问题。实验环境需要准备必要的工具,如RJ-45水晶头、双绞线、压线钳和双绞线测试仪。 适用人群:适合计算机网络技术相关专业学生或技术人员,尤其是初学者。 使用场景及目标:帮助初学者理解并实践双绞线的基本知识和技术,学会正确使用工具制作符合要求的线缆,熟悉常见故障诊断的方法。 其他说明:文中强调了一些重要的操作细节,比如剥离双绞线外皮时要注意不要损伤里面的铜线,保证线序正确无误,并推荐使用T568B标准制作直通线。此外,实验不仅加强了学生的动手能力和解决问题的能力,还加深了他们对网络基础知识的理解。
2025-10-08 11:20:27 714KB 网络工程 网络连接 RJ-45
1
STM32F429I-DISCOVERY是ST公司推出的基于STM32F429ZIT6的探索套件。套件外设丰富,并且将所有引脚均引出,极方便用户的拓展和探索高性能的Cortex-M4内核! 本设计是基于STM32F429I-DISCOVERY制作的DDS函数发生器,可以通过触摸屏或PC软件来显示和控制。 触摸显示和控制: PC软件显示和控制: 主要功能如下: 波形输出:矩形波、锯齿波、正弦波、三角波 DAC分辨率:12位 频率范围:1Hz-50KHz 幅度:0-3.3V 在当今快速发展的电子行业,STM32F429I-DISCOVERY开发板因其高性能Cortex-M4内核以及丰富的外设成为工程师和爱好者的理想选择。基于这款开发板设计的DDS函数发生器,提供了灵活的波形输出能力,可以生成矩形波、锯齿波、正弦波和三角波等多种波形,对于电子测量、通信和控制系统等领域具有重要应用价值。 DDS函数发生器的核心是直接数字合成(Direct Digital Synthesis)技术,它允许用户通过数字方式精确控制输出波形的频率、幅度和形状。在本设计中,DDS函数发生器能够实现1Hz至50KHz的宽频率范围,以及0至3.3V的输出幅度,这为各种应用场景提供了足够的灵活性和扩展性。通过触摸屏或PC软件的交互界面,用户能够轻松地设置波形参数并实时观察波形的变化,极大地方便了用户在进行电子设计和测试时的波形调试工作。 设计中的DAC(数字模拟转换器)分辨率为12位,这意味着它可以提供4096个不同的输出电平,从而确保了波形的平滑度和精确度。高分辨率的DAC配合DDS技术,保证了输出波形的质量,使其能够满足对波形精度有较高要求的专业应用。 本设计还提供了完整的源代码和电路原理图,这些资料对于理解DDS函数发生器的工作原理和开发过程至关重要。通过原理图,硬件工程师可以清楚地了解各个组件之间的连接关系,以及如何将STM32F429I-DISCOVERY开发板连接到其他电路中去。而源代码则为软件开发者提供了基础,他们可以通过分析和修改这些代码来进一步开发或定制功能,以适应特定的应用场景。 文件名称列表中的stm32f429i-disco.zip和generator.zip文件可能包含了上述提及的源代码和软件程序,而stm32f429i-disco_sch.zip文件则应为电路原理图的压缩包。DDS_Generator_UB.zip文件可能包含了PC端的上位机程序,用于与DDS函数发生器的硬件进行通信和控制。 基于STM32F429I-DISCOVERY的DDS函数发生器不仅为用户提供了一个高效、可靠的波形生成解决方案,而且其开源的设计资料也为电子工程师和爱好者提供了一个学习和实践的平台,有助于推动电子技术的创新和应用。
2025-10-07 18:25:55 3.33MB stm32
1
在电子设计领域,Lattice公司是一家知名的半导体制造商,提供各种CPLD(复杂可编程逻辑器件)和FPGA(现场可编程门阵列)产品。本文将深入探讨“lattice下载线”及其工作原理,以及如何通过并口进行下载。 Lattice下载线,又称为编程线或配置线,是用于向Lattice的CPLD和FPGA芯片上传配置数据的硬件设备。这些配置数据定义了芯片内部的逻辑功能。下载线通常包含一个USB接口或者并行接口(如DB25或DB9),连接到个人计算机,并通过特定的软件驱动程序与Lattice的开发工具进行通信。 1. **并口下载**: 并行端口(Parallel Port)是一种老式的接口,但在某些场合下仍然被用于编程设备,因为它能提供较高的数据传输速率。在Lattice下载线中,通过并口连接,可以快速地将配置文件传输到目标器件。并口通常有8位数据线,允许一次性传输多个比特,从而提高编程速度。 2. **ISP(In-System Programming)技术**: Lattice的ISP技术允许用户在系统中对CPLD和FPGA进行编程,这意味着无需拆卸电路板就可以更新或修改器件的逻辑功能。这在调试和原型设计阶段非常有用,减少了硬件更换的需求,降低了成本和时间消耗。 3. **lattice isp.pdf**: 这个PDF文件很可能是Lattice提供的详细文档,包含了使用ISP下载线进行器件编程的具体步骤、硬件连接指南、软件设置说明以及可能遇到的问题和解决方案。通常,这样的文档会涵盖以下内容: - 下载线的物理接口描述,包括连接器引脚定义。 - 配置文件的生成过程,通常通过Lattice的集成开发环境(如Diamond软件)完成。 - 使用ISP软件的详细说明,包括设置参数、选择正确的编程模式等。 - 实际操作步骤,包括连接下载线、启动编程过程、验证编程成功等。 - 故障排查指南,帮助用户解决在编程过程中遇到的问题。 4. **CPLD与FPGA的区别**: CPLD(Complex Programmable Logic Device)通常拥有固定的逻辑块和较少的I/O资源,适用于简单的逻辑功能实现,具有快速配置和较低功耗的优点。 FPGA(Field-Programmable Gate Array)则更强大,其内部由大量的可配置逻辑单元、布线资源和I/O模块组成,可以实现复杂的数字系统,但功耗和成本相对较高。 5. **配置流程**: 在使用Lattice下载线时,首先需要在开发环境中设计逻辑电路,生成相应的配置文件(如.bit或.hex文件)。然后,将下载线连接到计算机和目标设备,运行ISP软件,选择正确的配置文件,最后执行编程命令,将数据加载到CPLD或FPGA中。 Lattice下载线是Lattice器件编程的重要工具,通过并口下载方式,可以高效地将设计的逻辑配置到CPLD和FPGA中。"lattice isp.pdf"文档是理解和操作这个过程的关键,提供了详细的指导和支持。在实际应用中,正确理解和使用这些工具和方法对于电子产品设计和开发至关重要。
2025-10-06 17:20:43 73KB
1
Lattice CPLD(复杂可编程逻辑器件)是一种常用的数字逻辑集成电路,它允许用户根据特定的应用需求自定义其内部逻辑。CPLD下载线是将设计的配置数据从计算机传输到CPLD设备的物理媒介,它是开发和调试CPLD项目不可或缺的部分。本文件“lattice CPLD下载线原理图.rar”提供了关于Lattice CPLD下载线的设计细节,有助于理解其工作原理和制作方法。 CPLD下载线通常由接口电路、数据传输线和电源部分组成。接口电路是CPLD与PC连接的关键,它可能包括USB、串口或者并口等常见接口。例如,Lattice的iCE40系列CPLD常用的是JTAG(Joint Test Action Group)接口,这是一种四线或五线的接口,用于设备的测试和配置。 在JTAG接口中,有TDI(Test Data In)、TDO(Test Data Out)、TCK(Test Clock)、TMS(Test Mode Select)和TRST(Test Reset)这五条线。TDI输入数据,TDO输出数据,TCK提供时钟,TMS控制测试模式,TRST则是可选的测试复位信号。这些信号通过下载线与CPLD的JTAG引脚相连,实现数据的传输。 数据传输线通常采用屏蔽线或双绞线,以减少电磁干扰,并确保数据传输的稳定性。电源部分则为CPLD和接口芯片提供工作电压,通常包括VCC和GND。 在原理图中,我们可能会看到以下关键组件: 1. 接口芯片:如FT2232H,它是一个多通道USB到UART/FIFO桥接器,可以提供JTAG或SPI接口,适用于CPLD的编程。 2. 电平转换器:由于CPLD和PC的逻辑电平可能不同,需要电平转换器(如74HC245)来确保信号的正确传输。 3. 滤波电容:为了稳定电源和滤除噪声,原理图中会有去耦电容(如0.1μF陶瓷电容)和电源滤波电容(如100μF电解电容)。 4. 插座:JTAG插座用于连接CPLD设备,一般会采用标准的2x5或2x10针脚布局。 理解这个原理图可以帮助DIY爱好者或工程师自行制作CPLD下载线,或者在遇到现有下载线故障时进行排查和修复。同时,对于学习数字电路和硬件设计的人来说,这是一个很好的实践案例,可以深入理解数字系统中的通信协议和接口设计。 在实际应用中,使用CPLD下载线通常需要配合专门的软件,如Lattice的Diamond软件,它包含配置工具和编程器,可以读取用户的逻辑设计文件(如.bit或.svf格式),并通过下载线将配置数据加载到CPLD中,使CPLD按照预设的逻辑功能运行。 Lattice CPLD下载线原理图的分析涵盖了接口设计、信号传输、电源管理和数据配置等多个方面,是学习和掌握CPLD开发不可或缺的知识点。通过深入研究这份原理图,我们可以提升对数字电路设计的理解,为未来的项目开发打下坚实的基础。
2025-10-06 17:18:42 4KB lattice CPLD
1
某雷赛HBS86H混合伺服闭环步进驱动器的整体设计方案,涵盖硬件架构(如双核MCU、专业驱动芯片)、软件实现(如非线性PID补偿算法)以及通信协议(如ModbusRTU和自定义协议)。此外,还探讨了PCB布局技巧(如温度传感器集成)和参数自整定工具的应用。文中提供了多个关键代码片段,展示了如何优化功耗管理、过热保护和紧急停止等功能。同时,强调了参数调优对于系统性能的重要性。 适合人群:从事电机控制系统设计的研发工程师和技术爱好者。 使用场景及目标:适用于需要深入了解闭环步进驱动器的设计原理和实际应用的场合,帮助工程师掌握高效节能、稳定可靠的电机控制解决方案。 其他说明:文章不仅提供了理论知识,还包括大量实战经验和改进措施,有助于快速提升项目开发效率并解决常见问题。
2025-10-03 15:44:28 901KB
1
内容概要:本文详细介绍了某雷赛HBS86H混合伺服闭环步进驱动器的整体设计方案,涵盖硬件架构(双核MCU、专业驱动芯片、TVS阵列)、软件实现(闭环算法、通信协议、过热保护)以及参数自整定工具。文中特别强调了闭环算法中的非线性PID补偿机制,能够根据误差大小动态调整比例系数,从而提高控制精度并节省能耗。同时,提供了两种通信协议(ModbusRTU和自定义协议),确保现场调试和上位机对接的灵活性。此外,还讨论了PCB布局中的温度监控设计和过热保护措施,以及参数自整定工具的应用,使得不同型号电机的配置更加便捷高效。最后,针对官方demo中存在的问题,提出了改进后的软刹车方法,避免了机械冲击。 适合人群:从事步进电机控制系统设计的研发工程师和技术爱好者。 使用场景及目标:适用于需要深入了解闭环步进驱动器的设计原理和实际应用的技术人员,帮助他们掌握从硬件设计到软件实现的完整流程,优化系统性能。 其他说明:本文不仅提供了详细的理论解释,还附有具体的代码片段和实践经验分享,有助于读者更好地理解和应用相关技术。
2025-10-03 15:43:36 935KB
1
雷赛HBS86H闭环步进驱动方案:混合伺服驱动器整体方案打包,原理图+PCB+代码无误差警告,高效稳定性能保障,雷赛HBS86H混合伺服驱动器闭环步进方案:原理图+PCB板+无误代码集成打包,某雷赛86闭环步进驱动方案 HBS86H 86闭环电机驱动器 混合伺服驱动器。 原理图+PCB+代码。 整体方案打包。 代码无错误无警告。 ,关键词:雷赛86闭环步进驱动方案; HBS86H 86闭环电机驱动器; 混合伺服驱动器; 原理图; PCB; 代码; 整体方案打包; 无错误无警告。,雷赛86闭环步进驱动方案:HBS86H混合伺服驱动器,原理图+PCB+无忧代码
2025-10-03 15:42:21 3.68MB scss
1