行业制造-电动装置-一种基于PWM整流器的牵引供电装置.zip
2021-10-21 19:02:01 733KB
主控为STM32C8T6,双通道ADC采集数据,比如摇杆,输出控制舵机的PWM波,可实现摇杆控制云台
2021-10-21 14:58:50 2.96MB 双通道ADC
1
三相电压源型逆变器PWM仿真文档pdf,三相逆变器的仿真分析,并提供THD分析
2021-10-21 11:59:31 1.09MB 仿真
1
电力电子变换器:PWM策略与电流控制技术 带目录 2016年机械工业出版社出版的图书,作者是艾瑞克·孟麦森(EricMonmasson) 译者序 引言 第1章用于两电平三相电压型逆变器的载波脉宽调制1 1.1引言1 1.2参考电压va ref、vb ref、vc ref3 1.3参考电压Pa ref、Pb ref、Pc ref6 1.4va、vb、vc与Pa、Pb、Pc之间的联系8 1.5PWM信号的产生8 1.5.1反锯齿波8 1.5.2传统锯齿形载波11 1.5.3三角形载波12 1.5.4说明16 1.6通过参考波形va ref k、vb ref k、vc ref k确定Pa ref k、Pb ref k、Pc ref k16 1.6.1“正弦”调制1 7 1.6.2“居中”调制18 1.6.3“亚优化”调制19 1.6.4“平顶”和“平底”调制20 1.7总结22 1.8参考文献22 第2章空间矢量调制策略24 2.1逆变器和空间矢量PWM24 2.1.1问题描述24 2.1.2逆变器模型24 2.1.3空间矢量调制27 2.2通用方法33 2.2.1自由度33 2.2.2全指令域的拓展34 2.2.3空间矢量调制36 2.2.4PWM频谱38 2.3空间矢量PWM与实现39 2.3.1实现所需硬件及通用结构39 2.3.2工作扇区的确定42 2.3.3空间矢量PWM的一些变种43 2.4总结46 2.5参考文献46 第3章三相电压型逆变器的过调制48 3.1背景48 3.2调制策略的比较48 3.2.1引言48 3.2.2“全波”调制49 3.2.3标准调制策略的性能50 3.3调制器的饱和53 3.4改进的过调制56 3.5参考文献62 第4章脉冲宽度调制的计算与优化策略64 4.1程式化PWM简介64 4.2PWM的有效频率范围65 4.3程式化谐波消除PWM66 4.4优化PWM68 4.4.1简介68 4.4.2最小化判据68 4.4.3优化结果应用70 4.4.4实时生成原理72 4.5多电平PWM的计算73 4.5.1简介73 4.5.2三电平PWM的计算74 4.5.3独立的多电平PWM的计算77 4.6总结78 4.7参考文献79 第5章ΔΣ调制81 5.1引言81 5.2单相ΔΣ调制原理81 5.2.1开环或闭环操作82 5.2.2频率特性82 5.2.3参考信号幅值对频谱的影响84 5.2.4指令信号频率对频谱成分的影响85 5.2.5窄脉冲的缺失85 5.2.6决策要素85 5.2.7非对称与对称DSM86 5.3三相情况:矢量DSM87 5.3.1选择新矢量的判据88 5.3.2三电平三相逆变器93 5.4总结94 5.5参考文献94 第6章随机调制策略96 6.1引言96 6.2展布频谱技术及其应用96 6.3随机调制技术介绍98 6.3.1PWM的确定性基础98 6.3.2变频率随机PWM98 6.3.3随机脉冲位置PWM99 6.3.4三相逆变器中的随机PWM99 6.3.5整体评价99 6.4随机调制的频谱分析100 6.4.1电压频谱的影响100 6.4.2负载电流频谱的影响101 6.4.3直流母线电流影响101 6.4.4对电动机噪声和振动的影响103 6.5总结106 6.6参考文献106 第7章调速装置的电磁兼容:PWM控制策略的影响108 7.1简介108 7.2EMC研究的目标109 7.3静止变流器中的EMC机理110 7.3.1引言110 7.3.2EMC标准111 7.3.3标准的测量与仿真112 7.4时域仿真113 7.5频域建模:工程师的工具114 7.5.1建模的目标114 7.5.2干扰源建模115 7.5.3逆变器的频域表示119 7.6PWM控制120 7.6.1基于载波PWM120 7.7不同基于载波PWM策略的源的比较128 7.7.1正弦交叉比较PWM128 7.7.2谐波注入控制129 7.7.3换相率限制:死区带PWM控制129 7.8空间矢量PWM130 7.9最小化共模电压的结构134 7.10总结134 7.11参考文献135 第8章多相电压源逆变器137 8.1引言137 8.2电压源逆变器的矢量建模138 8.2.1n桥臂结构:术语、标记、举例138 8.2.2平均值控制:PWM140 8.3带多相负载的逆变器148 8.3.1负载拓扑和相关自由度149 8.3.2实际例子:三相情况152 8.3.3实际例子:五相负载154 8.4总结158 8.5参考文献158 第9章多电平变换器的PWM策略163 9.1多电平和交错并联变换器163 9.2调制器169 9.2.1回顾:两电平调制器169 9.2.2多电平调制器172 9.3
2021-10-21 10:25:32 41.53MB 电力电子 PWM 电流控制技术
1
利用STM8 高级定时器特点配成逆变器推挽升压PWM,具有AD采样PID控制PWM升压输出
2021-10-20 19:10:44 453KB 电源 PWM
1
一种设备,用于控制进入电池的太阳能电池板产生的电能。 如果您打算使用电池组安装离网太阳能系统,则需要一个太阳能充电控制器。它是放置在太阳能电池板和电池组之间的设备,用于控制太阳能电池板进入电池后产生的电能。主要功能是确保对电池正确充电并防止过度充电。 随着来自太阳能电池板的输入电压的升高,充电控制器会调节对电池的充电,以防止任何过度充电并在电池放电时断开负载。 太阳能控制器的类型 当前,PV电力系统中通常使用两种类型的充电控制器: 1.脉宽调制(PWM)控制器 2.最大功率点跟踪(MPPT)控制器 在本教程中,我将向您介绍有关PWM太阳能控制器的信息。 规范 1.充电控制器和电表 2.自动电池电压选择(6V / 12V) 3.根据电池电压自动设定设定点的PWM充电算法 4.LED指示充电状态和负载状态 5. 20x4字符LCD显示屏,用于显示电压,电流,功率,能量和温度。 6.防雷 7,逆流保护 8.短路和过载保护 9.充电温度补偿 10.充电小工具的USB端口 电路如何工作? 注意:红线-电源和黄线-控制信号 充电控制器的核心是Arduino Nano板。Arduino通过使用两个分压器电路来感应太阳能电池板和电池的电压。根据这些电压水平,它决定如何为电池充电和控制负载。 注意 :在上图中,电源和控制信号存在印刷错误。红线用于电源,黄线用于控制信号。 整个原理图分为以下电路: 1.配电电路: X1(MP2307)降压转换器将电池(B +和B-)的功率降低至5V。降压转换器的输出分配给 1. Arduino开发板 2. LED指示 3. LCD显示 4. USB端口,可为小工具充电。 2.输入传感器: 通过使用两个由电阻器R1-R2和R3-R4组成的分压器电路来检测太阳能电池板和电池的电压。C1和C2是滤波电容器,用于滤除不需要的噪声信号。分压器的输出分别连接到Arduino模拟引脚A0和A1。 通过使用两个ACS712模块感测太阳能电池板和电池电流。电流传感器的输出分别连接到Arduino模拟引脚A3和A2。 电池温度通过使用DS18B20温度传感器测量。R16(4.7K)是上拉电阻。温度传感器的输出连接到Arduino数字引脚D12。 3.控制电路: 控制电路基本上由两个p-MOSFET Q1和Q2组成。MOSFET Q1用于向电池发送充电脉冲,MOSFET Q2用于驱动负载。两个MOSFET驱动器电路由两个带有上拉电阻R6和R8的晶体管T1和T2组成。晶体管的基极电流由电阻器R5和R7控制。 4.保护电路: 通过使用TVS二极管D1保护来自太阳能电池板一侧的输入过电压。从电池到太阳能电池板的反向电流受肖特基二极管D2保护。过电流由保险丝F1保护。 5. LED指示: LED1,LED2和LED3分别用于指示太阳能,电池和负载状态。电阻R9至R15是限流电阻。 7.液晶显示: I2C LCD显示屏用于显示各种参数。 8. USB充电: USB插座连接了Buck转换器的最高5V输出。 9.系统重置: SW1是用于重置Arduino的按钮。
2021-10-20 12:47:58 295KB pwm控制 太阳能控制器 Arduino 电路方案
1
利用STM32 芯片 控制直流电机的速度 控制电机的PWM
2021-10-19 16:28:05 1.43MB STM32 电机控制PWM
1
树莓派wiringpi控制呼吸灯 树莓派gpio.1 pwm控制 C语言
2021-10-19 15:10:49 469B 树莓派 pwm 呼吸灯 wiringpi
1
PWM1和PWM2输出互补的周期为1KHz的PWM波,占空比初始化为10%,死区时间为4.27us。
2021-10-19 13:55:08 254KB 2812 PWM
1