绍研究所使用的微博数据集的结构和规模。然后介绍了本文进行早期谣言检测的实现原理。接着对本文所实现的谣言检测模型性能的评估方法进行了说明。最后对实验结果进行了分析,并提出了本文实验中存在的一些不足以及未来模型改进的方法。详细设计见md文件。
2023-02-19 17:11:51 296.6MB 机器学习
1
labelme:用Python实现的图像可视化标记工具 labelme:带有 Python 的图像注释工具 Labelme 是一种图形图像注释工具,其灵感来自 http://labelme.csail.mit.edu。 它是用 Python 编写的,并使用 Qt 作为其图形界面。 要求 Ubuntu / macOS / Windows Python2 / Python3 PyQt4 / PyQt5 安装 有选项: 平台 agonistic 安装:Anaconda、Docker 平台特定安装:Ubuntu、macOS Anaconda 需要安装 Anaconda,然后在下面运行:conda create --name=labelme python= 2.7 source activate labelme conda install pyqt pip install labelme Docker 你需要安装docker,然后运行如下: wget https://raw.githubusercontent.com/wkentaro/labelme/master/scripts/label
2023-02-19 16:43:42 12.4MB 机器学习
1
机器学习 深度学习 人工智能代码(python)实现决策树sklearn
2023-02-19 10:20:57 5KB python 人工智能 机器学习 深度学习
1
乳腺癌数据集 Python 预测模型 乳腺癌数据集二分类预测 机器学习 深度学习 网格搜索+logistic逻辑回归+神经网络+SVM支持向量机+KNN 条形图折线图可视化 预测效果较好,拟合较为准确。 jupyter notebook numpy pandas matplotlib sklearn 数据分析 数据挖掘
1
经典降维算法局部保持投影LPP算法的matlab代码,希望对需要降维算法的童鞋有所帮助
2023-02-18 10:28:55 5KB 机器学习 子空间学习 降维
1
A scikit-learn based module for multi-label et. al. classification
2023-02-17 17:23:37 1.96MB Python开发-机器学习
1
查看机器插过那些USB设备,可删除记录 对于用很久的电脑应该清理一下
1
机器学习资源】房价预测(完整代码及注释+数据文件)
2023-02-17 00:01:45 839KB 机器学习
1
同济大学机器学习课程PPT
2023-02-16 16:09:11 33.56MB 集成学习 机器学习 人工智能
1
将二部图模型引入聚类集成问题中,使用二部图模型同时建模对象集和超边集,充分挖掘潜藏在对象之间的相似度信息和超边提供的属性信息.设计正则化谱聚类算法解决二部图划分问题,在低维嵌入空间运行K-means++算法划分对象集,获得最终的聚类结果.在多组基准数据集上进行实验,实验结果表明所提出方法不仅能获得优越的结果,而且具有较高的运行效率.
1