一类肿瘤趋化模型解的整体存在性和渐近行为的研究,高烨,穆春来,本文研究一个关于肿瘤浸润趋化模型的问题egin{eqnarray*}left{egin{array}{llll}u_t= ablacdot(D(u) abla u)-chi ablacdot(u abla v),quad &xin Omega, t>0,\v_t=Delt
2024-05-24 09:30:40 163KB 首发论文
1
matlab图像分割肿瘤代码自述文件 在Matlab中使用ResUNet进行脑肿瘤分割 数据源:脑部MRI分割,将数据粘贴到source文件夹。 运行安装程序以初始化路径。 LGG细分数据集 该数据集包含脑部MR图像以及手动FLAIR异常分割蒙版。 这些图像是从The Cancer Imaging Archive(TCIA)获得的。 他们对应于癌症基因组图谱(TCGA)低级神经胶质瘤收集物中的110例患者,至少具有液衰减倒置恢复(FLAIR)序列和可用的基因组数据。 肿瘤基因组和患者数据在data.csv文件中提供。 所有图像均以.tif格式提供,每个图像有3个通道。 对于101种情况,有3个序列可用,即对比前,FLAIR,对比后(按通道顺序)。 对于9例,缺少造影剂后顺序,对于6例,缺少造影剂前顺序。 丢失的序列将替换为FLAIR序列,以使所有图像变为3通道。 遮罩是二进制的1通道图像。 它们将出现在FLAIR序列中的FLAIR异常分段(适用于所有情况)。 数据集被组织成110个文件夹,每个文件夹都以案例ID命名,其中包含有关源机构的信息。 每个文件夹包含具有以下命名约定的MR图像:
2022-05-17 16:46:52 2KB 系统开源
1
密集连接的3D CNN的分层MRI肿瘤分割 通过乐乐陈乐伍, ,阿纳斯Z.阿比丁, ,。 罗切斯特大学。 目录 介绍 该存储库包含论文“具有密集连接的3D CNN的分级MRI肿瘤分割”( )中描述的原始模型(dense24,densed48,no-dense)。 此代码可以直接在。 引文 如果您在研究中使用这些模型或想法,请引用: @inproceedings{DBLP:conf/miip/ChenWDAWX18, author = {Lele Chen and Yue Wu and Adora M. DSouza and Anas Z. Abidin and Axel Wism{\"{u}}ller and Chenliang Xu}, title = {{MRI} tumor
2022-05-15 13:03:17 7.39MB Python
1
TED(现称为BayesPrism) 使用统计边际化(BayesPrism)推断贝叶斯细胞比例重建:肿瘤微环境组成和基因表达的完全贝叶斯推断。 BayesPrism由反卷积模块和嵌入学习模块组成。去卷积模块利用来自scRNA-seq的细胞类型特异性表达谱,并实施完全贝叶斯推断,以根据肿瘤样品的大量RNA-seq表达共同估算细胞类型组成和细胞类型特异性基因表达的后验分布。嵌入学习模块使用期望最大化(EM)来使用肿瘤途径的线性组合来近似肿瘤表达,同时以反卷积模块估算的非肿瘤细胞的表达和分数为条件。 v1.1:添加了新功能,允许使用从scRNA-seq数据(例如,通过更精细的聚类)获得的细胞亚型/细胞状态信息,从而产生更细粒度的细胞类型,以更好地代表异质群体。它可以用来定义例如肿瘤微环境中的髓样或淋巴细胞群。 BayesPrism将计算这些子类型/状态的后验和。 v1.2:增加了功能cle
2022-04-26 16:44:50 59.15MB scrna-seq deconvolution bulk-rna-seq tumor-cells
1
matlab图像分割肿瘤代码美国图像中的脑肿瘤分割 该代码是在我的论文项目范围内,在我的帝国理工学院计算机(软件工程)理学硕士课程的最后一个学期开发的。 项目描述:包含在 安装 在本地克隆此存储库。 最好使用python虚拟环境来安装所有必需的软件包。 为避免出现任何问题,请通过运行来更新pip pip install --upgrade pip 通过运行安装所有必需的软件包 pip install -r requirements.txt 用法 RAS网络 要训​​练RAS网络模型,请在RAS / train.py文件夹中指定训练数据集路径并运行 python3 train.py 要测试RAS模型,请在RAS / test.py文件夹中指定测试数据集路径并运行 python3 test.py CPD网络 要训​​练CPD模型,请在CPD / train.py文件夹中指定训练数据集路径(image_root,gt_root)并运行 python3 train.py 要测试CPD模型,请在CPD / test.py文件夹中指定dataset_path并运行 python3 test.py
2022-04-15 21:18:44 2.84MB 系统开源
1
matlab图像分割肿瘤代码脑肿瘤检测使用图像处理 使用MATLAB从MRI图像中提取脑肿瘤 介绍 医学领域一直是必不可少的,在医学领域中的发展是改善人类的基本必要。医学图像处理是当今最具挑战性和新兴的领域。 MRI图像的处理是该领域的一部分。 鉴定肿瘤是一个不断上升的问题,因为受肿瘤影响的人们有所增加,这种上升是由从习惯到污染的许多因素引起的。 定位肿瘤一直是一个难题,因为这需要大量的人体解剖学经验,而这需要大量的时间。 该项目描述了从患者中检测和提取脑肿瘤的拟议策略。 MRI扫描大脑的图像。 该方法结合了分割和形态学运算,这是图像处理的基本概念。 使用MATLAB软件可以从大脑的MRI扫描图像中检测和提取肿瘤。 我们首先要集中精力创建一个程序,该程序需要很少的处理时间来获得结果。 执行代码 在matlab中打开代码 更改每个输入图像的目录 图片5的示例I = imread('C:\ Users \ Naren Adithya \ Desktop \ 5.jpg'); 运行代码
2022-03-30 12:03:53 755KB 系统开源
1
matlab图像分割肿瘤代码脑肿瘤检测器 脑细胞中异常细胞生长会导致脑瘤。 应当在初始阶段检测出肿瘤,以挽救患者的生命。 如今,脑部MRI的分割已成为医学领域的重要任务。 该项目定义了完成此操作的不同方法,并为此提供了MATLAB代码。 分割基本上是基于强度对图像中的像素进行提取或分组的过程。 它可以通过不同的方法来实现,例如阈值化,区域增长,轮廓和集水。 在该项目中,我们将肿瘤部分进行了分割,然后使用支持向量机将肿瘤分为良性肿瘤或恶性肿瘤。 图像分割:图像分割的目的是针对特定应用程序将图像划分为有意义的区域。 分割可以是灰度,颜色,纹理,深度或运动。
2021-12-16 19:37:16 2KB 系统开源
1
matlab图像分割肿瘤代码使用数字图像处理技术的脑肿瘤分割 该存储库包括用于脑肿瘤分割及其面积计算的源代码。 还提供了测试图像数据库。 下载以下文件。 源代码2.m database.rar 学习成果! 读取图像 使用大津法的阈值 区域道具 形态运算 图像中质量部分的密度和面积计算 肿瘤分割 抽象的 脑瘤是一种致命的疾病,如果没有MRI无疑是无法确定的。 在这项事业中,试图利用MATLAB重演从MRI图像中识别出患者的大脑是否患有肿瘤。 为了准备MRI图像上的形态学活动,将其调整大小,并使用极限自尊图像将其物理更改为高对比度图像。 该基本通道可能是肿瘤附近的区域。 在此半准备的图片上应用了形态学任务,并获取了可想象区域的强度和区域数据。 从包含肿瘤的各种MRI图像的可测量正常值,可以解析出这两个字符的基本估计值。 那时,它被用来传达最后的定位结果。 尽管这种娱乐程序经常可以带来正确的结果,但是当肿瘤的大小过小或肿瘤为空时它却忽略了执行。 任务的更大目标是从特定人的不同边缘拍摄的MRI图像中构建肿瘤的2D图片信息的信息库,并对其进行检查以引起人们对肿瘤细心的3D区域的注意。 为了满足此
2021-12-16 19:10:25 586KB 系统开源
1
脑肿瘤检测脑核磁共振成像 Brain MRI Images for Brain Tumor Detection_datasets.txt
2021-12-13 23:00:52 309B 数据集
1
焦斑肝和肝肿瘤分割 在该项目中,级联的U-net体系结构用于分割肝脏和肝脏肿瘤。 这是一项正在进行的工作,此回购中介绍了基本网络。 要求 [pytorch]( ) [opencv]( ) 数据集 数据集来自LITS挑战( )
2021-12-13 15:35:21 18KB Python
1