本资源是https://jarod.blog.csdn.net/article/details/127636618的配到资源,详细讲解了如何从零开始用TensorFlow搭建TextCNN,完成文本分类任务。 包含完整源代码和教程文档。模型搭建在Jupyter环境,可以根据教程文档或参考源代码自己一步一步实现自己的TextCNN,并在自己的数据集上训练出自己的模型。 模型在测试集上准确率达到96.45%,可以满足生产使用。
2023-05-12 17:45:36 60KB 深度学习 TextCNN python TensorFlow
1
NLP项目实例,实现一个类似于中文输入法中联想的功能;项目利用深度学习框架Pytorch,构建一个LSTM(也支持NGram,TextCNN,LSTM,BiLSTM等)模型,实现一个简易的中文单词预测(词语预测)功能,该功能可以根据用户输入的中文语句,自动预测(补充)词语;基于该项目训练的中文单词预测(词语预测)模型,在自定义的数据集上Top-1准确率最高可以达到91%左右,Top-5准确率最高可以达到97%左右。博文:https://blog.csdn.net/guyuealian/article/details/128582675
2023-04-18 22:22:20 432B 中文单词预测 LSTM NGram TextCNN
1
中文新闻分类模型,利用TextCNN模型进行训练,TextCNN的主要流程是:获取文本的局部特征:通过不同的卷积核尺寸来提取文本的N-Gram信息,然后通过最大池化操作来突出各个卷积操作提取的最关键信息,拼接后通过全连接层对特征进行组合,最后通过交叉熵损失函数来训练模型。
2023-02-19 17:06:30 48.44MB TextCNN 文本分类
1
Bert作为目前自然语言处理领域最流行的技术之一,文本分类作为自然语言处理领域最常见的任务之一,Pytorch作为目前最流程的深度学习框架之一,三者结合在一起将会产生什么样的花火,本套课程基于Pytorch最新1.4版本来实现利用Bert实现中文文本分类任务,延续动手学系列课程风格,全程手敲代码,跟着杨博一行一行代码撸起来。
1
基于深度学习的文本分类系统(完整代码+数据)bert+rnn textcnn fastcnn bert.rar
2023-01-17 06:50:17 5.82MB bert 文本分类 情感分析 深度学习
1
基于albert + textcnn 做分类的项目代码
2022-06-03 17:05:08 206.31MB bert
1
文本数据的序列性使得RNN的循环迭代模式成为显而易见的选择,但如果我们把文本编码后的结果(Batch×sequence×embedding)看做一张图片,那么通过卷积的方式提取文本信息也理所当然。这就是TextCNN算法的初衷。 TextCNN是一种高效的文本卷积算法,其可以捕捉相邻文本间的局部结构关系,同时卷积的特性又使得其支持并行操作。该算法在文本分类问题上的效果与TextRNN算法相当,因此被广泛使用。 那么如何从图片编码的角度,来合理的看待文本数据编码呢?这里提供两种视角: 视角1: 宽度为1的长条状图片,其embedding的尺寸可视为图片的channel大小。 对此,可直接应用1
2022-05-11 23:10:41 237KB ex ext 卷积
1
1、内容概要:本资源主要基于TextCNN(keras)实现文本分类,适用于初学者学习文本分类使用。 2、数据集为电商真实商品评论数据,主要包括训练集data_train,测试集data_test ,经过预处理的训练集clean_data_train和中文停用词表stopwords.txt,可用于模型训练和测试,详细数据集介绍见商品评论情感数据说明文档。 3、源代码:word2vec_analysis.py 是基于Word2Vec进行词向量的生成,采用向量平均求得句向量,然后分别构建RandomForest和GBDT分类模型进行文本分类。 4、源代码:textcnn_model.py是基于Keras构建CNN、TextCNN卷积神经网络模型对文本进行分类。
2022-05-07 08:29:02 11.13MB 文本分类 深度学习 TextCNN 自然语言处理
该资源包含了数据集、源码以及说明文档
2022-04-15 15:28:30 237.08MB NLP sentimentanalys 英文语料
1
简介 1、本项目是在tensorflow版本1.14.0的基础上做的训练和测试。 2、本项目为中文的文本情感分析,为多文本分类,一共3个标签:1、0、-1,分别表示正面、中面和负面的情感。 3、欢迎大家联系我 4、albert_small_zh_google对应的百度云下载地址: 链接: 提取码:wuxw 使用方法 1、准备数据 数据格式为:sentiment_analysis_albert/data/sa_test.csv 2、参数设置 参考脚本 hyperparameters.py,直接修改里面的数值即可。 3、训练 python train.py 4、推理 python predict.py 知乎代码解读
1