【Python项目实战】基于时间卷积网络(Temporal Convolution Network ,TCN)的发动机剩余寿命预测
航空发动机结构复杂,状态变量多且相互之间存在着严重非线性特征,传统的基于物理失效模型的方法难以精确地预测发动机的剩余寿命(RUL)。针对此问题,采用时间卷积网络(Temporal Convolution Network ,TCN)作为一种最新出现的序列神经网络,被证明在序列数据预测上有良好的效果。采用TCN实现对发动机剩余寿命进行预测,预测过程通过建立退化模型,给每个训练样本添加RUL标签;将特征输入构建的卷积神经网络得到剩余寿命的预测值。为了验证方法的有效性,在NASA提供的涡轮风扇发动机仿真数据集(C-MAPSS)上进行了测试,,结果表明采用TCN算法拥有更高的精度。
1