4th Digital Signal Processing 的课后习题解答 1.1 (a) One dimensional, multichannel, discrete time, and digital. (b) Multi dimensional, single channel, continuous-time, analog. (c) One dimensional, single channel, continuous-time, analog. (d) One dimensional, single channel, continuous-time, analog. (e) One dimensional, multichannel, discrete-time, digital. 1.2 1 (a) f = 0.01π 2π = 200 ⇒ periodic with N p = 200. 30π 1 (b) f = 105 ( 2π ) = 17 ⇒ periodic with N p = 7. 3π (c) f = 2π = 32 ⇒ periodic with N p = 2. 3 (d) f = 2π ⇒ non-periodic. 1 31 (e) f = 62π 10 ( 2π ) = 10 ⇒ periodic with N p = 10. 《第四版数字信号处理Proakis_and_Manolakis解题指南》是针对数字信号处理课程的一份详尽习题解答资源,涵盖了多种类型的信号特性。在本资料中,主要讨论了一维、多维、离散时间与连续时间以及单通道与多通道的信号,并通过具体的频率分析来探讨信号的周期性。 在1.1题中,区分了不同类型的信号: (a) 一维、多通道、离散时间和数字信号。 (b) 多维、单通道、连续时间和模拟信号。 (c) 一维、单通道、连续时间和模拟信号。 (d) 同(c),一维、单通道、连续时间和模拟信号。 (e) 一维、多通道、离散时间和数字信号。 1.2题涉及频率与周期性的计算,如: (a) 频率f = 0.01π,周期Np = 200。 (b) 频率f = 30π,周期Np = 7。 (c) 频率f = 3π,周期Np = 2。 (d) 频率为3/2π,非周期性。 (e) 频率f = 62π/10,周期Np = 10。 1.3题考察了不同信号的周期性: (a) 周期为Tp = 2π/5。 (b) 频率f = 5/2π,非周期性。 (c) 频率f = 11/2π,非周期性。 (d) 分析了不同正弦函数的周期性,指出它们的乘积是非周期性的。 (e) 识别了三个正弦函数的周期,x(n)的周期是16,即它们的最小公倍数。 1.4题涉及频率与样本数的关系: (a) 描述了频率与样本数N的关系,以及最大公约数(GCD)如何影响周期。 (b) 和(c)部分展示了N的不同值下,k与其最大公约数GCD的组合,以及由此推导出的周期Np。 1.5题通过示例图1.5-1展示了信号xa(t)的波形,计算了信号x(n)的表达式,从而得出其频率f = 1/6π,周期Np = 64。 总结来说,这份解答指南深入浅出地介绍了数字信号处理中的基本概念,包括信号的维度、类型、连续性和离散性,以及周期性和频率的计算。通过具体的习题解答,帮助学习者理解并掌握这些关键知识点,对提升数字信号处理的理解和应用能力具有重要作用。
2025-03-28 11:41:45 2.91MB 数字信号处理 习题解答
1
雷达信号处理是雷达技术中的一个核心领域,它涉及从雷达系统接收的信号中提取有用信息的各种方法和技巧。随着雷达技术的发展,对信号处理的要求越来越高,这就要求研究者和工程师必须掌握信号处理的基础知识,以确保从雷达回波中准确无误地获取目标信息。《雷达信号处理基础》第二版的出版为这一领域提供了系统的学习资料。 第二版书籍由Mark A. Richards博士编写,他是乔治亚理工学院的教师,并在雷达信号处理领域有着深入的研究。此书旨在为读者提供雷达信号处理的基础知识,书中详细介绍了雷达信号处理的核心概念、原理和技术。书籍涵盖了从基本的雷达方程,到复杂的信号检测、估计和分类方法,为读者构建了一个全面的知识框架。 雷达信号处理涵盖了多个关键领域,包括信号检测、信号估计、目标跟踪和合成孔径雷达技术等。信号检测是指如何区分和识别目标信号与噪声信号的过程,这一过程对于雷达的有效运作至关重要。信号估计则关注于从含有噪声的信号中提取目标参数的技术,如距离、速度、角度等。目标跟踪是利用雷达连续测量数据来估计和预测目标运动轨迹的过程。合成孔径雷达技术是一种特殊的雷达技术,能够生成高分辨率的图像,常用于地面成像和地形测绘。 在雷达系统中,信号处理也包括对信号进行适当的变换,例如傅里叶变换、小波变换等,以改善信号的质量和可提取的信息量。此外,信号处理还包括对多径效应的处理,这是指雷达信号在到达接收器前可能经过多个路径的情况,这种效应可能导致信号失真。 为了更精确地处理和分析信号,雷达信号处理工程师们经常使用各种数学工具和算法,如卡尔曼滤波器、维纳滤波器等。这些工具能帮助工程师从复杂的信号中提取关键信息,并减少噪声的影响。随着计算机技术的发展,数字信号处理在雷达系统中变得越来越重要。数字信号处理器能实现复杂的算法,提高雷达的性能和可靠性。 雷达信号处理不仅需要理论知识,还需要大量的实践和实验,通过不断测试和优化,才能最终设计出符合实际应用需求的雷达系统。因此,实践环节也是《雷达信号处理基础》第二版中不可或缺的一部分。 本书的读者对象包括雷达系统工程师、信号处理领域的研究人员和学生等。通过阅读本书,他们可以全面地了解雷达信号处理的各个方面,掌握其理论基础和实用技术,从而在实际工作中发挥重要的作用。此外,由于雷达技术在军事、民用和科研领域都有广泛的应用,因此,掌握雷达信号处理的基础知识对于这些领域的发展同样具有重要意义。 本书的版权归属于McGraw-Hill Education出版社,并且在版权法的保护下,未经出版社允许,不得私自复制、分发或者存储该出版物的任何部分。ISBN 978-0-07-179833-4和MHID 0-07-179833-1是该书的电子版和印刷版的唯一识别编号。 本书的电子版由Cenveo® Publisher Services转换而来,eBook版本使得读者能够在计算机、平板电脑或智能手机等设备上阅读。McGraw-Hill Education的电子书以数量折扣的方式提供,可用于作为奖金、销售促销或企业培训项目。如需联系代表,请访问www.mhprofessional.com。 本书的使用受到一定的限制条款约束,使用时需遵守这些条款。虽然本书提供了可靠的资料来源,但是McGraw-Hill Education并不能保证书中的信息完全准确、充分或完整,对于使用本书信息所导致的任何错误、遗漏或结果,McGraw-Hill Education也不负责任。 《雷达信号处理基础》第二版以其系统性和完整性,是学习和应用雷达信号处理不可多得的参考资料。通过阅读本书,可以为从事雷达相关领域工作的专业人士提供深入的理论支持和实践指导。
2025-03-27 11:30:03 29.38MB
1
Henry Stark and John Woods -- Probability and random processes with applications to signal processing Third Edition
2024-12-07 14:33:29 8.7MB Probability random processes Henry
1
到达方向(DOA)估计是阵列信号处理中的重要问题。 针对同时撞击均匀线性阵列(ULA)远场的许多不相关且相干的窄带信号的DOA估计问题,提出了一种有效的空间差分方法。 在所提出的方法中,首先使用常规子空间方法估计不相关源,然后通过利用空间差分技术将它们消除,即,仅相干分量保留在空间差分矩阵中。 最后,通过利用空间差分矩阵来估计剩余的相干信号。 与以前的工作相比,该方法可以提高DOA估计的准确性,并且可以增加可检测信号的最大数目。 理论分析和仿真结果证实了该方法的有效性。
2024-11-04 15:36:56 3.53MB Array signal processing; coherent
1
DFT的matlab源代码音频信号处理 Coursera上音乐应用程序的音频信号处理分配 注意:这是出于个人学习目的。 第一周 编程作业: 第二周 编程作业: 第三周 编程作业: 第四周 编程作业: 第五周 编程作业: 第六周 编程作业: 第七周 同行评分作业: 第八周 同行评分作业: 第9周 同行评分作业:
2024-09-27 20:19:54 21.96MB 系统开源
1
麦克风阵列信号处理英文原版书籍,非常好的参考书。作者:Jacob Benesty · Jingdong Chen · Yiteng Huang
2024-05-21 10:42:11 3.09MB 英文版书籍
1
480 Gbps光通信系统:一种数字仿真平台,可使用部署在光网络中的不同先进技术(包括MIMO均衡技术)来评估480 Gbs光相干通信系统的性能
2024-03-07 12:58:40 640KB analysis signal-processing dsp matlab
1
贝叶斯信号处理,经典理论书籍。 经典与现代,滤波方法
2024-03-02 13:07:46 19.73MB 贝叶斯
1
SincNet SincNet是用于处理原始音频样本的神经体系结构。 这是一种新颖的卷积神经网络(CNN),它鼓励第一个卷积层发现更多有意义的滤波器。 SincNet基于参数化的Sinc函数,这些函数实现了带通滤波器。 与学习每个滤波器的所有元素的标准CNN相比,所提出的方法只能从数据中直接学习低和高截止频率。 这提供了一种非常紧凑而有效的方式来导出专门针对所需应用进行了调整的定制滤波器组。 该项目发布了一系列代码和实用程序,可通过SincNet进行说话人识别。 使用TIMIT数据库提供了说话人识别的示例。 如果您对应用于语音识别的SincNet感兴趣,可以查看PyTorch-Kaldi
2023-11-23 13:09:20 173KB audio python deep-learning signal-processing
1
Think DSP Digital Signal Processing in Python 英文mobi 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2023-10-21 06:02:04 5.14MB Think DSP Digital Signal
1