实现说明 主要实现文章前半部分的工作,PyTorch实现,基于的工作,PyTorch才是世界上最屌的框架,逃脱。 实现参考 代码说明 (1)主要修改: 输出表示形式: BertForSequenceClassification 输入表示形式: BertEmbeddings 输入和输出都实现了多种策略,可以结合具体的任务,找到最佳的组合。 (2)非主要实现:examples下的关于classification的文件 (3)服务部署:基于Flask,可以在本地开启一个服务。具体实现在中。 (4)代码正确参考,不提供数据集,不提供预训练模型,不提供训练后的模型(希望理解吧)。 (5)相
2023-01-08 22:33:03 363KB nlp relation-extraction fewrel acl2019
1
通过使用命名实体识别提高无监督的关系提取 我们 也比较性能 KnowItAll最先进的系统性能,并以命名实体识别表现其模式学习 组件,它使用一个简单的和 强大的模式语言
BERT-Relation-Extraction
2022-08-04 09:09:58 26KB pytorch
1
【关于 NLP】 那些你不知道的事 作者:杨夕 项目地址: 个人介绍:大佬们好,我叫杨夕,该项目主要是本人在研读顶会论文和复现经典论文过程中,所见、所思、所想、所闻,可能存在一些理解错误,希望大佬们多多指正。 NLP 面经地址: 目录 【关于 信息抽取】 那些的你不知道的事 【关于 实体关系联合抽取】 那些的你不知道的事 【关于 命名实体识别】那些你不知道的事 【关于 关系抽取】那些你不知道的事 【关于 文档级别关系抽取】那些你不知道的事 【关于 知识图谱 】 那些的你不知道的事 【关于 实体链指篇】 那些的你不知道的事 【关于 实体消歧 】 那些的你不知道的事 【关于KGQA 】 那些的你不知道的事 【关于Neo4j 】 那些的你不知道的事 【关于 细粒度情感分析】 那些的你不知道的事 【关于 主动学习】 那些的你不知道的事 【关于 对抗训练】 那些的你不知道的事 【关于 GCN in
2022-01-03 15:01:38 294.61MB attention bert gcn relation-extraction
1
实体关系提取 基于TensorFlow的实体和关系提取。基于TensorFlow的实体和关系撤消,2019语言与智能技术竞赛信息撤除(实体与关系撤回)任务解决方案。 如果您对信息抽取论文研究感兴趣,可以查看我的博客。 抽象 该代码以管道式的方式处理实体及关系抽取任务,首先使用一个多标签分类模型判断句子的关系种类,然后将句子和可能的关系类型输入序列标注模型中,序列标注模型标注出句子中的实体,最终结合预测的关系和实体输出实体-关系列表:(实体1,关系,实体2)。 该代码以管道方式处理实体和关系提取任务。 首先,使用多标签分类模型来判断句子的关系类型。 然后,将句子和可能的关系类型输入到序列标签模
1
LAnn标注工具 当前情况 目前为封闭域关系三元组标注,不提供新关系的标注,之前开放域关系三元组版本将不再维护,不再维护,不再维护,存在BUG!存在BUG!存在BUG!。 计划脱离对Django框架的依赖,借助PyQt的WebEngine实现标注界面和Python程序数据传输,更好地支持Pytorch和数据处理,已基本打通JS和Python之间的墙壁。 计划加入预训练BERT模型。 LAnn简介 LAnn(Little Annotator)是一个用于标注三元组的纯前段中文标注工具。具有使用简单的特点,采用网页的形式,使用浏览器便可运行。标注过程、结果直观,易后处理。基本不用配置,快速上手。可只用于NER标注,也可以适当修改,改为POS标注(实体类型改为词性,只进行实体标注)或者分词标注(设置特殊的实体类型“词语”,只进行实体标注)。 可以先后导入test.txt、entity_dict,然
2021-10-20 13:24:27 6.82MB vim annotator ner relation-extraction
1
Google-Bert模型在医疗领域的运用,实体关系三元组抽取模型(结合网上下载的两个相关模型进行修改) 该资源仅提供模型程序(无医疗相关数据)
2021-10-05 12:06:19 383.19MB bert nlp 三元组抽取
1
Agricultural Knowledge Graph 由于工作原因,该项目已停止维护。因此项目代码仅供参考,项目中包含的数据可免费用于学术等非商业用途。 相关工作请引用paper: AgriKG: An Agricultural Knowledge Graph and Its Applications[C]. DASFAA (3) 2019: 533-537 项目介绍: 本项目是上海市《农业信息服务平台及农业大数据综合利用研究》子课题《上海农业农村大数据共享服务平台建设和应用》的研究成果。 该课题是由上海市农业委员会信息中心主持,以“致富农民、服务市民、提高行政管理效能”为目标,充分发挥大数据在农业农村发展中的重要功能和巨大潜力,重点建设上海市级农业农村大数据中心,促进信息资源的共建共享和创新应用。 华东师范大学数据科学与工程学院(以下简称华师大数据学院)作为课题主要参与单位以实现智慧
1
关系提取中的位置感知注意力RNN模型 此存储库包含PyTorch代码,用于纸上的。 TACRED数据集:有关TAC关系提取数据集的详细信息可以在上找到。 要求 Python 3(在3.6.2上测试) PyTorch(在1.0.0上测试) 解压缩,wget(仅用于下载) 制备 首先,从斯坦福大学网站下载和解压缩GloVe载体,方法如下: chmod +x download.sh; ./download.sh 然后使用以下方法准备词汇和初始单词向量: python prepare_vocab.py dataset/tacred dataset/vocab --glove_dir data
1
DoTAT: A Domain-oriented Text Annotation Tool East China University of Science and Technology - NLP [华东理工大学-自然语言处理与大数据挖掘实验室] Attention 该工具已于2020年获得软件著作权,证书号:软着登字第5885316号,如需二次开发使用则要在项目中着重标明来源ECUST-NLP! Notification 在线试用版网站(a live demo website): An administrator account: Username:ecust Password:ecustlab301 A typical annotation process using DoTAT may include the following five steps: (1) Defi
1