**Keras 数据集详解** Keras 是一个高度模块化、用户友好的深度学习库,它在 Python 中运行,可以作为 TensorFlow、Theano 和 CNTK 的后端。Keras 提供了许多内置的数据集,便于研究人员和开发者快速进行实验。本篇文章将主要探讨两个在 Keras 中常用的数据集:MNIST 和 IMDB。 **MNIST 数据集** MNIST(Modified National Institute of Standards and Technology)是手写数字识别的经典数据集,广泛用于训练和测试机器学习模型,特别是图像分类任务。该数据集包含60,000个训练样本和10,000个测试样本,每个样本都是28x28像素的灰度图像,对应于0到9的十个数字。在 Keras 中,可以使用 `keras.datasets.mnist.load_data()` 函数来加载 MNIST 数据集。这个函数会返回一个元组,包含训练和测试数据的图像和对应的标签。 ```python from keras.datasets import mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() ``` 数据加载后,通常需要对图像进行预处理,例如归一化(将像素值从0-255缩放到0-1之间)和展平(将二维图像转换为一维向量)。 **IMDB 数据集** IMDB 数据集是另一个 Keras 内置的数据集,用于情感分析任务,即判断电影评论是否正面。该数据集包含了50,000条电影评论,其中25,000条用于训练,25,000条用于测试。每条评论都被标记为正面(positive,1)或负面(negative,0)。数据集中的文本已经进行了预处理,包括去除HTML标签、停用词和标点符号,以及将词汇表中的单词编号。在 Keras 中,可以使用 `keras.datasets.imdb.load_data()` 函数获取 IMDB 数据集。 ```python from keras.datasets import imdb (x_train, y_train), (x_test, y_test) = imdb.load_data() ``` 这里的 `x` 是评论的词序列,而 `y` 是相应的标签。由于模型处理的是固定长度的输入,通常需要对评论进行截断或填充以达到相同的长度。 **数据加载的注意事项** 在实际使用中,`mnist.npz` 和 `imdb.npz` 文件可能是为了节省存储空间和加快加载速度而压缩的版本。在解压后,可以通过 NumPy 的 `load()` 函数读取这些 `.npz` 文件,它们包含了多个数组数据。 ```python import numpy as np data = np.load('mnist.npz') # 或者 data = np.load('imdb.npz') ``` 解压后的 `MNIST.rar` 文件可能包含原始的 MNIST 图像文件,这些文件通常以 `.gz` 格式压缩。`.gz` 文件需要先解压再处理。 Keras 提供的 MNIST 和 IMDB 数据集是深度学习入门和实验的重要资源。它们覆盖了图像识别和自然语言处理两大领域,帮助开发者快速构建和评估模型,推动AI技术的发展。
2024-07-28 16:53:11 49.75MB keras imdb.npz mnist.npz mnist数据集
1
keras 源码中下载MNIST。数据源是通过 url = https://s3.amazonaws.com/img-datasets/mnist.npz 进行下载的。访问该 url 地址被墙了,导致 MNIST 相关的案例都卡在数据下载的环节。因此给出这个数据集供大家使用!
2023-08-07 12:05:16 10.96MB mnist Keras
1
videpose3d执行后生成的2d文件
2023-04-04 00:15:30 231.49MB videpose3d data_2d_h36m_gt
1
DECA(Detailed Expression Capture and Animation)中使用到的FLAME_albedo_from_BFM.npz
2022-12-23 19:16:49 474.74MB DECA
1
Keras用IMDB数据源(imdb.npz + imdb_word_index.json) from tensorflow.keras.datasets import imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) # word_index is a dictionary mapping words to an integer index word_index = imdb.get_word_index() # We reverse it, mapping integer indices to words reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) # We decode the review; note that our indices were offset by 3 # because 0, 1 and 2 are reserved indices for "padding", "start of sequence", and "unknown". decoded_review = ' '.join([reverse_word_index.get(i - 3, '?') for i in train_data[0]])
2022-12-05 21:47:55 17.27MB imdb keras
1
路透社数据集,它包含许多短新闻及其对应的主题,由路透社在 1986 年发布。它 是一个简单的、广泛使用的文本分类数据集。它包括 46 个不同的主题:某些主题的样本更多, 但训练集中每个主题都有至少 10 个样本。 与 IMDB 和 MNIST 类似,路透社数据集也内置为 Keras 的一部分。
2022-11-24 17:36:36 2.22MB 深度学习 路透社 reuters kears
1
将下载好的imdb.npz文件放在主目录下的 .keras/datasets文件夹下即可(用于tensorflow学习)
2022-11-20 09:57:58 16.66MB imdb.npz tensorflow NLP
1
新闻分类reuters.npz 数据集
2022-06-06 14:12:39 2.01MB 分类 文档资料 数据挖掘 人工智能
1
mnist.npz 数据集 具体载入过程代码中有& 可执行代码 一份是CNN(运行时间大概超五分钟)一份是全连接层(运行速度快,测试用)
2022-04-23 18:26:45 10.96MB mnist CNN 可执行代码 数据集
1
本资源是用于pytho数据分析的npz文件,它可用python绘制成散点图,算是一个很好的练习资源。
2022-03-20 09:17:04 2KB Python数据分析
1