有时我们需要来自 pdf 混合的样本,其中观察到 1 个以上的峰。 例如,用于分析非参数核密度估计方法的优劣。 通过使用拒绝方法,此函数从 N 个正态(高斯)分布的混合(平均和)生成随机数。 它还给出了混合概率密度函数 (pdf) 作为可选输出。 3个高斯分布生成的500个样本的例子如图所示,即通过以下命令: >> X = umgrn([-4 0 5],[1 2 1.5],500); >> 图; 历史(X); 有关更多详细信息,请参阅“帮助 umgrn”。 作者: 1. Avan Suinesiaputra (avan.sp@gmail.com) 2. Fadillah Tala (fadil.tala@gmail.com)
2023-12-03 18:44:26 3KB matlab
1
【多模态大模型综述】 使用 gpt3.5 精细翻译,完美融合图片等内容 由微软7位华人研究员撰写,足足119页 它从目前已经完善的和还处于最前沿的两类多模态大模型研究方向出发,全面总结了五个具体研究主题: - 视觉理解 - 视觉生成 - 统一视觉模型 - LLM加持的多模态大模型 - 多模态 agent 本报告一共7位作者。 发起人和整体负责人为 Chunyuan Li。 他是微软雷德蒙德首席研究员,博士毕业于杜克大学,最近研究兴趣为 CV 和 NLP 中的大规模预训练。 他负责了开头介绍和结尾总结以及“利用 LLM 训练的多模态大模型”这章的撰写。 核心作者一共 4位: Zhe Gan Zhengyuan Yang Jianwei Yang Linjie Li 他们分别负责了剩下四个主题章节的撰写。
2023-10-25 15:55:11 55.51MB 范文/模板/素材 microsoft 自然语言处理
1
3D box经典论文-《Multimodal 3D Object Detection fromSimulated Pretraining》学习记录
2022-07-01 19:00:47 2.41MB CARLA 3DBOX
1
数据融合matlab代码使用深度和惯性传感器的深度多级多模式(M2)融合进行人体动作识别的数据集和代码(最新发表在IEEE传感器杂志上) 从链接下载数据集: ImageFolders_KinectV2Dataset文件夹具有与Kinect V2数据集相关的所有图像。 要在Matlab上运行代码,请将文件夹“ ImageFolders_KinectV2Dataset”的所有子文件夹和matlab文件放置在同一Matlab的工作目录中。 运行Matlab文件“ FirstDeepFusionFramework.m”,以查看有关Kinect V2数据集上First融合框架准确性的结果。 类似地,运行Matlab文件“ ThirdDeepFusionFramework”,以查看有关Kinect V2数据集上的Third融合框架准确性的结果。 名称为“ XONet”的Matlab文件在Kinect V2数据集的图像文件夹上经过训练的CNN模型。 Inertial2SignalImages.m将原始惯性数据转换为图像。 引文 如果您发现提出的工作和对您的研究有用的代码,请引用以下论文。 @arti
2022-05-16 21:36:44 34KB 系统开源
1
单模态和跨模态检索任务 依存关系 我们建议对以下软件包使用Anaconda:Python 2.7, (> 0.1.12), (> 1.12.1), 朋克句子分词器: import nltk nltk . download () > d punkt 下载资料 在此示例中,我们使用MSCOCO图像标题作为数据集,对于单个模型(图像或文本),您只能使用图像/文本作为训练数据,皮质模态检索与单个模态检索共享相同的框架。 您可以从MSCOCO图像字幕网站下载数据,或从和下载预先计算的图像功能。 要使用完整的图像编码器,请在,和从其原始来源下载图像。 wget http://www.cs.toronto.edu/~faghri/vsepp/vocab.tar wget http://www.cs.toronto.edu/~faghri/vsepp/data.tar wget http:/
2022-02-26 17:17:35 1.28MB Python
1
SHREC 15 Track 3D Object Retrieval with Multimodal Views 比赛结果-附件资源
2022-02-13 19:43:54 106B
1
Multimodal videoclassificationwithstacked contractiveautoencoders
2022-02-11 17:39:24 765KB 研究论文
1
考虑多级车辆,公共交通和停车场的多模式动态交通分配的一般公式 由马威和Xidong Pi(AlanPi1992)实施,在卡内基梅隆大学土木和环境工程专业的肖恩钱的建议下进行。 要求 cvxopt 1.1.9 numpy的1.14.2 MNMAPI:MNMAPI是MAC在CMU中开发的流量模拟库,请参阅和 MNM_mcnb:MNMAPI的文件夹接口,请参考 指示 请克隆整个存储库,然后使用jupyter notebook运行Runner.ipynb。 实验 要在exp_config.py中检查实验的详细信息,请参阅该论文。 档案规格 src / exp_config.py:论文中的实验设置 src / gp.py:渐变投影方法 src / models.py:多模式DUE的实现 src / runner.ipynb:运行MMDUE的脚本 img / .:本文中使用的想象 data /
1
RIFT-multimodal-image-matching-main.zip
2021-12-07 17:14:34 1.33MB 影像配准 影像匹配 遥感 数字图像处理
1
深层神经风格转换 这是Wang等人的论文的PyTorch实现。 用法 $ git clone https://github.com/FeliMe/multimodal_style_transfer.git 转移方式 如果您只想将网络与经过预先训练的模型一起使用,请打开“ transform_image.ipynb”(或“ transform_video.ipynb”),从/ images文件夹中选择模型和图像(或使用您自己的)并运行笔记本。 火车 如果要在样式图像上训练自己的模型,则首先需要下载,将其存储在克隆此项目的目录中的“ / coco /”文件夹中。 然后使用“ train_multimodal.ipynb”。 您可能需要根据样式图像来调整STYLE_WEIGHTS。 例子 风格 输出样式子网 输出增强子网 输出优化子网 修补 尖叫声 静物 混合的 实施细节 在此实现中
2021-11-12 15:46:07 233.6MB JupyterNotebook
1