KDD99入侵检测数据为网络上注明的 训练数据集合,数据特征共计41种特征,41种特征分为4个大类。本算法基于微软的LightGBM实现,实现简练。包括了从数据处理到训练模块到预测的全过程,准确率极高
2024-04-02 16:13:31 12KB KDD99 boost 机器学习 数据预处理
1
首先转为excel文件,再对第2,3,4,41列字符型数据转为数值型数据,转换原则是字符型数据按首字母排序顺序赋值,以0开始。
2022-12-12 18:00:32 63.91MB kdd 网络入侵检测数据集
1
网络安全最经典的公开数据集KDD99,利用KDD99数据集可以开展基于机器学习的网络入侵方法的验证
1
概率论数值实验报告-处理KDD99数据集 (1).docx
2022-10-29 19:03:49 504KB 概率论实验报告 KDD99数据集
1
kdd99的数据。用于无监督异常检测
2022-04-27 13:19:46 77.06MB 异常检测
1
1、内容概要:本资源主要基于Python实现kdd99入侵检测数据集预处理,搭建DNN和CNN神经网络实现kdd99入侵检测分类,适用于初学者学习入侵检测分类使用。 2、入侵检测数据集: 该数据集是从一个模拟的美国空军局域网上采集来的9个星期的网络连接数据,分成具有标识的训练数据和未加标识的测试数据。KDD99数据集总共由500万条记录构成,它还提供一个10%的训练子集kddcup.data_10_percent_corrected和测试子集corrected。 3、源代码Handle_data.py是kdd99数据集预处理源代码,kddcup.data_10_percent_corrected.xls是预处理后的数据集。 4、源代码:Kdd_dnn.py是基于DNN神经网络对入侵检测数据集进行分类;kdd_cnn.py是基于CNN神经网络对入侵检测数据集进行分类。
2022-04-16 18:09:43 5.22MB 入侵检测KDD99 机器学习 DNN CNN
处理KDD99数据集
2021-11-27 18:01:24 495KB 概率论实验
1
kdd99-scikit scikit-learn使用决策树(CART)和多层感知器解决kdd99数据集的解决方案 Kdd99数据集简介 是建立一个网络入侵检测器,这是一种能够区分“不良”连接(称为入侵或攻击)和“良好”正常连接的预测模型。 请注意,测试数据并非与训练数据具有相同的概率分布,并且包括不在训练数据中的特定攻击类型。 训练数据快照( raw/kddcup.data_10_percent.txt ): 0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal. 0,tcp,http,SF,239,486,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,1.00,0.00,0.00,19,19,1.00,0.00,0.05,0.00,0.00,0.00,0.00,0.00,norm
1
ML-ATIC 在 API的帮助下,基于机器学习方法的异常流量识别分类器。 这是我的本科毕业设计代码。 而且代码中会有很多错误。 无论如何,在训练模型和评估中可能有一些不合适的方法。 欢迎您发现它。 有任何疑问,请给我发电子邮件! 要求 Java SE 7 Maylib中的Jars 来自KDDCUP99的数据,我使用受计算资源限制的10%版本。 安装 将TrainAndTest.zip和Model.zip解压缩到数据文件中。 通过添加原始数据的头对Train.arff和Test.arff进行了预处理。 如果有兴趣,您可以打开它,然后进行探索。 Java文件中有一些字符编码问题,它们是UTF-8和GB18030。 并可能在注释中导致一些错误。 文件模型包含一些训练有素的模型,可以直接使用。 您还可以通过运行BuildTree.java,TestBP.java和TestLibs
1
基于Tensorflow用CNN(卷积神经网络)处理kdd99数据集,代码包括预处理代码和分类代码,准确率99.6%以上,并且快速收敛至最优值。 (Based on Tensorflow (convolutional neural network) processing KDD99 data set based on CNN, the code includes preprocessing code and classification code, the accuracy rate is more than 99.6%, and quickly converge to the optimal value.)
2021-06-26 20:38:52 17.46MB 入侵检测 kdd99 卷积神经网络
1