SESF保险丝
SESF-Fuse:用于多焦点图像融合的无监督深度模型
抽象的
在这项工作中,我们提出了一种无监督的深度学习模型来解决多焦点图像融合问题。 首先,我们以无监督的方式训练编码器-解码器体系结构,以获取输入图像的深层特征。 然后,我们利用这些特征和空间频率来测量活动水平,这在多焦点融合任务中起着至关重要的作用。 该方法背后的关键点在于,只有景深(DOF)内的对象在照片中才具有清晰的外观,而其他对象则很可能被模糊。 与以前的工作相比,我们的方法分析的是深层特征的锐利外观,而不是原始图像。 实验结果表明,与现有的16种融合方法相比,该方法在客观和主观评估中均达到了最新的融合性能。
可视化
我们在下图中显示融合结果的可视化。 第一行是近焦点源图像,第二行是远焦点源图像。 第三行是我们方法的决策图,最后一行是融合结果。
分行介绍
我们在该分支机构中提供SESF-Fuse的培训和测试方法
1