通过卡尔曼滤波进行有效GP回归 基于两篇论文的存储库,其中包含相对于同类项目的简单实现代码: [1] A.Carron,M.Todescato,R.Carli,L.Schenato,G.Pillonetto,机器学习遇到了Kalman Filtering ,《 2016年第55届决策与控制会议论文集》,第4594-4599页。 [2] M.Todescato,A.Carron,R.Carli,G.Pillonetto,L.Schenato,通过卡尔曼滤波的有效时空高斯回归,ArXiv:1705.01485,已提交JMLR。 PS。 该代码尽管基于上述论文中使用的代码,但与之稍有不同。 它是它的后来的改进和简化版本。 而且,此处仍未提供[2]中介绍的用于实现自适应方法的代码。 文件内容是很容易解释的(有关每个文件的简要介绍,请参考相应的帮助): main.m:包含主程序 plotResul
1
角色扮演游戏 ROGP是在模型中高斯过程的均值和协方差函数的工具。 它是为以下论文概述的工作而开发的: 另请参见我们在该项目上的。 如果您使用此工具,请引用我们的论文为: @misc{Wiebe2020robust, title={A robust approach to warped Gaussian process-constrained optimization}, author={Johannes Wiebe and Inês Cecílio and Jonathan Dunlop and Ruth Misener}, year={2020}, eprint={2006.08222}, archivePrefix={arXiv}, primaryClass={math.OC} } 安装 python -m
2022-03-19 15:23:01 13KB machine-learning pyomo gaussian-processes Python
1
The goal of building systems that can adapt to their environments and learn from their experience has attracted researchers from many fields, including com- puter science, engineering, mathematics, physics, neuroscience, and cognitive science. Out of this research has come a wide variety of learning techniques that have the potential to transform many scientific and industrial fields. Recently, several research communities have converged on a common set of issues sur- rounding supervised, unsupervised, and reinforcement learning problems. The MIT Press series on Adaptive Computation and Machine Learning seeks to unify the many diverse strands of machine learning research and to foster high quality research and innovative applications.
2021-12-28 11:42:56 3.86MB Machine Learning
1
高斯过程回归的直观教程 ,女王大学的,加拿大金斯敦 笔记本可以在以下位置执行 笔记本的: @misc{wang2020intuitive, title={An Intuitive Tutorial to Gaussian Processes Regression}, author={Jie Wang}, year={2020}, eprint={2009.10862}, archivePrefix={arXiv}, primaryClass={stat.ML} } 本教程的读者是想使用GP但又不适应GP的人。 在阅读完教科书《高斯机器学习过程》 [ ]的前两章后,我发生了这种情况。 由于难以理解该理论,因此GP的使用与使用它之间存在差距。 当我在线阅读教科书和观看教程视频时,我可以毫无困难地跟随大多数人。 内容对我来说很有意义。 但是,即
2021-12-12 11:01:33 32.01MB JupyterNotebook
1
Matlab集成的c代码高斯过程回归和分类工具箱 版本4.2。 对于GNU Octave 3.2.x和Matlab 7.x 版权所有(C)2015-2018-Carl Edward Rasmussen 版权所有(C)2015-2018-Hannes Nickisch 如何阅读 如果您想立即开始使用,请阅读下面的第1)节,并直接跳至doc / index.html中的示例。 关于这些计划 matlab程序的此集合实现并演示了在其中描述的一些算法 a)Rasmussen和Williams的书:“高斯机器学习过程”,麻省理工学院出版社,2006年 b)Nickisch和Rasmussen的文章:“二元高斯过程分类的近似”,JMLR 2008 c)Candela和Rasmussen的文章:“稀疏近似高斯过程回归的统一观点”,JMLR,2005年 d)Murray,Adams和Mackay撰写的论文:“椭圆切片采样”,AISTATS 2010 e)Neal的报告:“重要重要性抽样”,多伦多,1998年 f)Naish-Guzman和Holden的论文:“广义FITC近似”,NIPS,2007年
2021-11-04 10:48:47 8.37MB 系统开源
1
3D-MICE:横截面和纵向插补的整合 要求 代码是用R编写的。 开始使用 要训​​练,跑步(最好以R减价跑步) source('tempMICEGPEvalTr.R') 这是一个包装器代码,调用各种子例程来生成训练数据,掩盖缺失值并执行3D-MICE插补,每个步骤都包装在其自己的R源文件中,并且应该是不言自明的。 同样地,进行训练,跑步(最好以R降级的方式跑步) source('tempMICEGPEvalTe.R') 引文 @article{luo20173d, title={3D-MICE: integration of cross-sectional and longitudinal imputation for multi-analyte longitudinal clinical data}, author={Luo, Yuan and Szolovits, Pe
1
皮格里格 适用于Python的Kriging工具包。 目的 该代码支持2D和3D普通和通用克里金法。 内置了标准变异函数模型(线性,幂,球面,高斯,指数),但也可以使用自定义变异函数模型。 2D通用克里金代码当前支持区域线性,对数对数和外部漂移项,而3D通用克里金代码在所有三个空间维度上都支持区域线性漂移项。 两种通用克里金法也都支持通用的“指定”和“功能”漂移功能。 使用“指定的”漂移功能,用户可以手动指定每个数据点和所有网格点的漂移值。 借助“功能性”漂移功能,用户可以提供定义漂移的空间坐标的可调用函数。 该软件包包括一个模块,该模块包含的功能对于使用ASCII网格文件( \*.asc )应该有用。 有关更多详细信息和示例,请参见的文档。 安装 PyKrige需要Python 3.5以上版本以及numpy,scipy。 可以通过以下方式从PyPi安装: pip install p
1
C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006
2021-08-30 14:10:26 3.06MB Gaussian Pro
1
GPy火炬 新闻:GPyTorch v1.3 GPyTorch v1.3刚刚发布。 GPyTorch是使用PyTorch实现的高斯进程库。 GPyTorch旨在轻松创建可扩展,灵活和模块化的高斯过程模型。 在内部,GPyTorch与许多现有的GP推理方法不同,它使用诸如预处理共轭梯度之类的现代数值线性代数技术执行所有推理操作。 实施可扩展的GP方法非常简单,就像通过我们的LazyTensor接口或内核很多现有的LazyTensors为内核矩阵及其派生词提供矩阵乘法例程LazyTensors 。 与基于Cholesky分解的求解器相比,这不仅可以轻松实现流行的可扩展GP技术,而且通常还可以显着提高GPU计算的利用率。 GPyTorch提供(1)显着的GPU加速(通过基于MVM的推理); (2)用于可伸缩性和灵活性( ,, , ,...)的最新算法进步的最新实现; (3)易于与深
1
贝叶斯优化 具有高斯过程的贝叶斯全局优化的纯Python实现。 PyPI(点): $ pip install bayesian-optimization 来自conda-forge频道的Conda: $ conda install -c conda-forge bayesian-optimization 这是基于贝叶斯推理和高斯过程的受约束的全局优化程序包,它试图在尽可能少的迭代中找到未知函数的最大值。 该技术特别适合于高成本功能的优化,在这种情况下,勘探与开发之间的平衡很重要。 快速开始 请参阅以下内容,快速浏览贝叶斯优化程序包的基础知识。 可以在文件夹中找到更多详细信息,其他高
2021-08-18 14:08:46 16.66MB python simple optimization gaussian-processes
1