《基于EMD-GWO-SVR的时间序列预测方法详解》 时间序列预测是数据分析中的一个重要领域,广泛应用于经济、金融、气象、工程等多个行业。本文将深入探讨一种利用经验模态分解(Empirical Mode Decomposition,简称EMD)、灰狼算法(Grey Wolf Optimizer,简称GWO)以及支持向量回归(Support Vector Regression,简称SVR)相结合的方法来对时间序列进行预测。这种方法充分利用了各自算法的优势,提高了预测的准确性和稳定性。 一、经验模态分解(EMD) EMD是一种数据驱动的信号处理技术,它能够将非线性、非平稳的时间序列分解为一系列简单、局部可描述的内在模态函数(Intrinsic Mode Function,简称IMF)。EMD通过对原始信号进行迭代处理,自适应地分离出不同频率成分,将复杂信号转化为多个具有物理意义的分量:高频分量、低频分量和残差。这种方法无需事先假设信号模型,对于复杂数据的处理具有显著优势。 二、灰狼算法(GWO) 灰狼算法是一种基于动物社会行为的全局优化算法,模拟了灰狼群体在捕猎过程中的合作和竞争行为。在预测问题中,GWO可以寻找最优参数,以最大化或最小化目标函数。在这个过程中,灰狼群体中的阿尔法狼、贝塔狼和德尔塔狼分别代表最优解、次优解和第三优解,通过调整这些狼的位置来不断优化参数,最终达到全局最优。 三、支持向量回归(SVR) 支持向量机(SVM)在分类任务中表现出色,而其拓展形式支持向量回归则用于回归问题。SVR通过构建一个最大边距超平面,使得数据点尽可能接近这个超平面但不超过预设的误差边界。在预测时,SVR寻找能够最小化预测误差且同时满足边界条件的最优决策面。在本方法中,GWO用于优化SVR的参数,如核函数类型、惩罚参数C和核函数参数γ,以提高预测精度。 四、方法整合与应用 在“EMD-GWO-SVR”方法中,首先对时间序列进行EMD分解,得到不同频率的分量;然后使用GWO优化SVR的参数,构建预测模型;将EMD分解后的各分量作为输入,通过训练好的SVR模型进行预测。这种方法结合了EMD的自适应分解能力、GWO的全局优化能力和SVR的高效预测能力,尤其适用于处理非线性、非平稳的时间序列预测问题。 在MATLAB环境下,我们可以使用提供的代码文件“GWO_SVR.m”和“EMD_GWO_SVR.m”来实现这一预测流程。此外,“gp.xls”可能包含的是待预测的数据样本,而“package_emd”和“libsvm-免编译”则是用于EMD分解和SVR建模的相关库文件,简化了算法的实现步骤。 总结,EMD-GWO-SVR方法是将多学科理论融合应用的典范,为复杂时间序列的预测提供了新的思路。其有效性和实用性已在多个领域的实际问题中得到了验证,未来有望在更广泛的场景下发挥重要作用。
2024-08-08 14:48:56 1.11MB
1
matlab程序,基于bayesshrink visuShink阈值的小波去噪方法代码亲测可用
2024-05-17 20:35:45 3.13MB 小波去噪
1
基于波形特征匹配延拓的EMD改进方法及其应用研究,吴宝,,基于(Empirical Mode Decomposition, EMD)的时频分析方法是一种新型时频分析方法,能够有效地实现对非线性、非平稳信号的分析及特征提取。
2024-04-01 14:30:40 279KB 首发论文
1
针对现有带式输送机托辊故障检测方法采用接触式测量、不便于安装操作、不适合于井下大范围故障检测等问题,提出了一种基于小波去噪和BP-RBF神经网络的托辊故障检测方法。采集托辊运行时的音频信号,采用结合了软阈值法和硬阈值法的折中法对音频信号进行小波去噪处理;将每一层小波分解信号的能量和作为该层的特征值,通过处理系数对低频部分的特征值进行转换,以减小其在总能量中的占比,使故障特征更加明显;将提取的特征向量输入BP-RBF神经网络模型中进行故障检测。测试结果表明,对于正常托辊信号、托辊表面存在裂痕、托辊表面磨损3种情况,该方法的故障识别率达到96.7%。与传统的频谱分析诊断技术相比,该方法所需的工作量更少、准确率更高;相较于基于温度检测等的故障检测技术,该方法采用非接触安装方式,安装更方便,检测范围更大,具有良好的应用前景。
1
针对短时傅立叶变换时频分辨率不能同时很高,小波变换运算时间偏长,抗噪性差,Wigner-Ville变换及其改进方法受交叉项影响等问题,提出了一种基于希尔伯特-黄(HHT,Hilbert-Huang Transformation)算法的跳频信号参数估计.该方法的分解是自适应的,计算出的瞬时频率有很高的时间分辨率和较高频率分辨率.对于HHT算法中出现的虚假分量和端点效应问题,通过互相关方法来消除虚假分量,镜像闭合延拓方法去除端点效应.仿真结果表明该方法能很好解决上述两个问题.
2024-02-27 14:57:39 1.37MB 行业研究
1
本文讲述了开关电路电磁骚扰(EMD)的产生及传播途经,重点介绍抑制开关电路电磁骚扰的措施和方法,包括选择合适的开关电源电路拓扑及工作频率、选择合适的电路元器件、增加无源缓冲电路、一次整流电路中加功率因数校正(PFC)网络、增加滤波网络、接地等,这些措施和方法能明显减小开关电路的骚扰。
2024-01-14 13:12:34 89KB EMC|EMI 开关电源 电磁骚扰 EMD
1
提出了一种基于小波域阈值降噪和改进Hilbert-Huang变换的滚动轴承的振动信号分析方法。利用小波域阈值消噪的方法对振动信号进行降噪,采用基于包络极值延拓和相关系数法的HHT方法得到信号的Hilbert谱和Hilbert边际谱,根据谱图幅值特性判断轴承的状态。该方法能够有效地提取信号特征,具有良好的诊断效果。
2023-12-18 15:31:38 725KB 小波降噪 端点效应 故障诊断
1
基于时变滤波的经验模态分解TVF-EMD 附案例数据 可直接运行,基于时变滤波的经验模态分解TVF-EMD 附案例数据 可直接运行,基于时变滤波的经验模态分解TVF-EMD 附案例数据 可直接运行基于时变滤波的经验模态分解TVF-EMD 附案例数据 可直接运行基于时变滤波的经验模态分解TVF-EMD 附案例数据 可直接运行
2023-11-21 09:55:56 26KB 信号分解
1
探讨了基于经验模态分解(EMD)和支持向量机(SVM)的提升机刚性罐道故障诊断方法。首先利用EMD对采集的振动信号进行分解以获得内蕴模态函数(IMF),并结合小波降噪对其高频分量进行降噪。然后,提取降噪后IMF分量中的典型信息作为故障特征向量,使用SVM进行故障模式识别。
2023-09-10 22:45:11 300KB 刚性罐道 故障诊断 模式识别
1
EEMD分解 分析imf方差比,平均周期和Pearson相关系数 根据重构算法将分解得出的IMF进行高低频的区分 计算高低频分量和趋势项与原价格序列的相关系数与方差比
2023-06-01 10:16:54 38KB 重构 算法 vmd imf
1