因为tensorflow2.0的keras api需要从cifar官方下载速度太慢,并且代码会检查md5,所以特意整理出来分享,直接将其解压到 windows: C:/用户/"你的用户名"/.keras/datasets/ Linux: ~/.keras/datasets/ 就可以使用
2022-05-21 15:40:16 323.87MB cifar10 cifar100
1
人工智能 深度学习 cifar100 数据集
2022-04-08 17:06:44 141.76MB 人工智能 深度学习
1
基于pytorch的多种基础算法,对cifar100进行分类,代码完整
2022-03-31 00:46:22 43KB Cifar100分类;多种算法实现
这是pytorch初学者的游乐场,其中包含流行数据集上的预定义模型。 目前我们支持 mnist,svhn cifar10,cifar100 stl10 亚历克斯网 vgg16,vgg16_bn,vgg19,vgg19_bn resnet18,resnet34,resnet50,resnet101,resnet152 squeezenet_v0,squeezenet_v1 inception_v3 这是MNIST数据集的示例。 这将自动下载数据集和预先训练的模型。 import torch from torch.autograd import Variable from utee import selector model_raw, ds_fetcher, is_imagenet = selector.select('mnist') ds_val = ds_fetcher(b
1
CIFAR100 小图像分类数据集 50,000 张 32x32 彩色训练图像数据,以及 10,000 张测试图像数据,总共分为 100 个类别。 返回: 2 个元组: x_train, x_test: uint8 数组表示的 RGB 图像数据,尺寸为 (num_samples, 3, 32, 32) 或 (num_samples, 32, 32, 3),基于 image_data_format 后端设定的 channels_first 或 channels_last。 y_train, y_test: uint8 数组表示的类别标签,尺寸为 (num_samples,)。 参数: label_mode: "fine" 或者 "coarse"
2022-01-12 09:13:43 176.01MB cifar100 numpy tensorflow keras
1
CIFAR100 小图像分类数据集 50,000 张 32x32 彩色训练图像数据,以及 10,000 张测试图像数据,总共分为 100 个类别。 返回: 2 个元组: x_train, x_test: uint8 数组表示的 RGB 图像数据,尺寸为 (num_samples, 3, 32, 32) 或 (num_samples, 32, 32, 3),基于 image_data_format 后端设定的 channels_first 或 channels_last。 y_train, y_test: uint8 数组表示的类别标签,尺寸为 (num_samples,)。 参数: label_mode: "fine" 或者 "coarse"
2022-01-12 09:13:42 176.01MB cifar100 numpy tensorflow keras
1
CIFAR-100上的VGG-16 在CIFAR-100上训练的VGG网(具有batchnorm和dropout)。 您可以通过更改数据加载器类中的一行来轻松修改此代码以在CIFAR-10上进行训练。 在不增加数据的情况下达到约64%的准确性。 该数据集上的记录是75%。 我计划添加数据参数,以使性能达到最新水平。 重要提示-请将saves文件夹下载到项目目录中。 它包含权重 这是架构: 有用的链接
2021-10-26 17:59:11 7KB Python
1
pytorch训练cifar100测试单GPU效率代码,用于测试GPU效率,基于开源https://github.com/weiaicunzai/pytorch-cifar100
2021-08-26 20:06:00 161.8MB PyTorch GPU
1
皮托奇·西法尔100 pytorch在cifar100上练习 要求 这是我的实验资料 python3.6 pytorch1.6.0 + cu101 张量板2.2.2(可选) 用法 1.输入目录 $ cd pytorch-cifar100 2.数据集 我将使用来自torchvision的cifar100数据集,因为它更方便,但我还将示例代码保留了用于在数据集文件夹中编写您自己的数据集模块的示例,以作为人们不知道如何编写它的示例。 3.运行tensorbard(可选) 安装张量板 $ pip install tensorboard $ mkdir runs Run tensorboard
1
cifar100数据集,官网直接下载的,为了方便新手使用直接传到csdn啦
2021-08-03 09:50:08 160.97MB cifar100 cifar100数据集 数据集 分类数据集
1