matlab矩阵求和函数代码Matlab 中 TRCA 的两种实现方法的比较 SSVEP 识别中使用的最先进算法之一是任务相关组件分析 (TRCA)。 这里我比较了 Matlab 中 TRCA 的两种实现方法。 一个是由 Masaki Nakanishi 在 . 基于这个版本(参见trca.m),我提出了一种新的实现方式,计算速度更快,参见trca_fast.m。 它们之间的主要区别在于函数 trca() 使用 FOR 循环来计算协方差矩阵,而 trca_fast() 使用矩阵计算来计算协方差矩阵。 我们知道 Matlab 使用矩阵计算比使用 FOR 循环更好地进行计算,trca_fast() 可以更快地进行计算。 使用 FOR 循环: 它计算 FOR 循环(即 S 和 Q)中任意两次试验之间的协方差矩阵的总和,如以下代码所示: % eeg : Input eeg data % (# of channels, Data length [sample], # of trials) for trial_i = 1:1:num_trials-1 x1 = squeeze(eeg(:,:,tr
2024-05-11 16:42:09 157KB 系统开源
1
再生性牙髓治疗的现行技术研究及展望,郑怡,高波,年轻恒牙通常因外伤、发育异常及龋坏导致牙髓根尖周炎。传统牙髓治疗如根尖诱导成形术和牙髓切断术存在根尖发育异常和治疗周期长
2024-02-25 23:07:14 423KB 首发论文
1
深度学习(Deep learning, DL)已经成为现代人工智能中最成功和被广泛采用的方法之一。与这些成功相伴而来的是越来越复杂和昂贵的架构设计,其基础是一个核心概念:层。本文对层次的这一基本作用提出了挑战,并深入介绍了一种新的、无层次的深度学习范式,将输出计算为动态系统的不动点:深度均衡(DEQ)模型。 首先,我们介绍深度均衡模型的一般公式。我们讨论了这些模型如何表达“无限级”的神经网络,向前和向后解耦传递,但与传统层的成本和设计复杂性-即使在一些最具竞争力的设置(例如,语言建模,语义分割等)。 其次,我们进一步讨论了这种均衡方式带来的挑战和机遇。我们表明,DEQ公式揭示了深度学习的许多新特性,这些特性长期以来被传统的层-堆叠方案所掩盖。利用它们,我们可以训练和部署这些新的轻量级均衡算法,大大补充了深度学习的现有发展,并使我们能够在最先进的水平上改善多个现有结果(例如,光流估计)。 DEQ方法已经在理论和实证两方面引领了社区内隐深度学习的新研究领域(例如,NeurIPS 2020教程)。因此,我们通过讨论未来的工作如何进一步利用这一平衡视角来构建更可扩展、高效和准确的下一代D
2022-06-17 09:11:58 34.99MB 深度学习
1
区块链是不同计算和经济学概念的组合,主要包括对等网络,不对称密码学,共识协议,分散存储,分散计算和智能合约以及激励机制。这些概念的综合将区块链定位为新技术并同时作为可编程平台和网络。这里引入的链下计算是将区块链上进行复杂的运算转移到链下,让链上和链下的任务区分开来,减轻链上不断为了交易而彼此之间相互计算而消耗的资源,从而让链上变得更轻,从而提高区块链的性能。
2022-01-30 09:18:02 649KB 区块链 智能合约 链下计算
1
该书内容非常全面,涵盖了多种卡尔曼滤波算法及MATLAB实现,作者将多年的工作经验融入此书,使之成为学习卡尔曼滤波的同学一本不可多得的经典参考书。
1
翻译研究的入门教材,适合本科生研究生和翻译爱好者。原版书籍,观点新颖,实用性强。
2021-12-15 22:06:40 1.23MB translation studies
1
哈工大最新《自然语言处理数据增强方法》综述论文,155页pdf阐述复述、噪声和抽样三大数据增强方法 数据增强(DA)是一种有效的策略,可以缓解深度学习技术可能失败的数据稀缺情况。它在计算机视觉中得到了广泛的应用,然后被引入到自然语言处理中,并在许多任务中取得了改进。DA方法的重点之一是提高训练数据的多样性,从而帮助模型更好地泛化到未见测试数据。在本研究中,我们根据扩充数据的多样性,将数据增强方法分为三大类,即复述、噪声和抽样。本文从以上几个方面对数据挖掘方法进行了详细的分析。此外,我们还介绍了它们在自然语言处理任务中的应用以及面临的挑战。 引言 数据增强(Data Augmentation,简称DA),是指根据现有数据,合成新数据的一类方法。毕竟数据才是真正的效果天花板,有了更多数据后可以提升效果、增强模型泛化能力、提高鲁棒性等。然而由于NLP任务天生的难度,类似CV的裁剪方法可能会改变语义,既要保证数据质量又要保证多样性,使得大家在做数据增强时十分谨慎。 作者根据生成样本的多样性程度,将DA方法分为了以下三种: Paraphrasing:对句子中的词、短语、句子结构做一些更改,保留原始的语义 Noising:在保证label不变的同时,增加一些离散或连续的噪声,对语义的影响不大 Sampling:旨在根据目前的数据分布选取新的样本,会生成更多样的数据
2021-10-18 22:10:51 2.24MB 自然语言处理
1
__EAST_framework_vs_SCADA_Software 渗透测试 安全防护 安全实践 攻防实训与靶场 系统安全
2021-09-11 13:00:38 4.91MB 数据安全 业务风控 工控安全 移动安全
Design Patterns in Modern C++ Reusable Approaches for Object-Oriented Software Design 英文无水印原版pdf pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
2021-08-29 08:15:57 2.86MB Design Patterns Modern C++
1
Optimal State Estimation Kalman, H infinity, and Nonlinear Approaches kalman pdf+代码
2021-08-04 12:57:10 20.64MB kalman
1