在本实践教程中,我们将深入探讨如何利用ROS(Robot Operating System)、YOLOV8和SLAM(Simultaneous Localization and Mapping)技术实现智能小车的导航功能,特别是通过激光雷达进行环境建图。这一部分主要关注激光雷达与SLAM算法的结合应用。 ROS是一个开源操作系统,专为开发机器人应用而设计。它提供了诸如硬件抽象、消息传递、包管理等基础设施,使得开发者可以更专注于算法和功能实现,而不是底层系统集成。在智能小车导航中,ROS扮演着核心协调者的角色,负责处理传感器数据、执行任务调度以及与其他节点通信。 YOLO(You Only Look Once)系列是目标检测算法,用于识别图像中的物体。YOLOV8是YOLO系列的最新版本,相较于之前的YOLOV3和YOLOV4,它可能在速度和精度上有进一步提升。在智能小车导航中,YOLOV8可以帮助小车实时识别周围的障碍物,确保安全行驶。 SLAM是机器人领域的一个关键问题,它涉及机器人同时定位自身位置并构建环境地图的过程。对于没有先验地图的未知环境,SLAM是必要的。SLAM算法通常包括数据采集(如激光雷达或视觉传感器)、特征提取、状态估计和地图更新等步骤。在激光雷达+SLAM的场景下,雷达数据提供了丰富的距离信息,帮助构建高精度的三维环境模型。 激光雷达(LIDAR)是一种光学遥感技术,通过发射激光束并测量其反射时间来确定距离。在智能小车导航中,激光雷达可以提供连续的、密集的点云数据,这些数据是构建高精度地图的基础。SLAM算法通常会选择如Gmapping或 Hector SLAM等专门针对激光雷达的数据处理框架,它们能有效地处理点云数据,构建出拓扑或几何地图。 在“robot_vslam-main”这个项目中,我们可以预期包含以下组件: 1. **ROS节点**:用于接收和处理激光雷达数据的节点,如`lidar_node`。 2. **SLAM算法实现**:可能是自定义的SLAM算法代码或预封装的库,如`slam_algorithm`。 3. **地图发布器**:将SLAM算法生成的地图以可视化的形式发布,如`map_publisher`。 4. **小车定位模块**:结合SLAM结果与车辆运动学模型,计算小车的实时位置,如`localization_node`。 5. **路径规划与控制**:根据地图和目标位置,规划安全路径并控制小车移动,如`planner`和`controller`节点。 通过整合这些组件,我们可以实现智能小车的自主导航,使其能够在未知环境中有效移动,避开障碍物,并构建出周围环境的地图。在实际操作中,还需要考虑如何优化算法性能、处理传感器噪声、适应不同的环境条件,以及实现有效的故障恢复机制,确保系统的稳定性和可靠性。通过深入学习ROS、YOLOV8和SLAM,开发者可以不断提升智能小车的导航能力,推动机器人技术的进步。
2024-10-11 10:13:31 60KB
1
【项目资源】: 包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。 包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【项目质量】: 所有源码都经过严格测试,可以直接运行。 功能在确认正常工作后才上传。 【适用人群】: 适用于希望学习不同技术领域的小白或进阶学习者。 可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【附加价值】: 项目具有较高的学习借鉴价值,也可直接拿来修改复刻。 对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。 【沟通交流】: 有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。 鼓励下载和使用,并欢迎大家互相学习,共同进步。
1
ORB-SLAM是一个精确的多功能单目SLAM系统,它的全称是ORB-SLAM: A Versatile and Accurate Monocular SLAM System,其研发者是Taylor Guo,发布于2015年的《IEEE Transactions on Robotics》。单目SLAM指的是使用单个相机进行同时定位与建图的技术,而ORB-SLAM是其中的一个开创性工作,它具有处理剧烈运动图像的能力,并可自动处理闭环控制、重定位、甚至全自动位置初始化。 SLAM系统主要分为单目SLAM和多目SLAM,其中单目SLAM仅使用单个相机作为传感器输入,难度较高,因为单个视角的信息有限,但它的应用场景更加广泛。而ORB-SLAM正是在单目SLAM领域的重大突破。它在各种场合,无论是室内的小场景还是室外的大场景,都显示出强大的鲁棒性。 系统架构方面,ORB-SLAM具有三个主要功能模块,包括特征提取、追踪、局部地图构建和闭环控制,这三个模块通过三个线程并行运行,它们分别是:追踪线程、局部地图构建线程和闭环控制线程。特征提取使用的是ORB特征,它是一种旋转不变的特征,即使在没有GPU的情况下也能够实现实时的图像处理。 关于系统的关键创新点,其一是在于对所有任务使用相同的ORB特征进行追踪、地图构建、重定位和闭环控制,这样系统效率高、稳定可靠。ORB-SLAM可以进行实时的全局优化处理,包括位置地图和闭环回路。它还采用了一种基于位置优化的实时闭环控制,称为Essential Graph,该图通过生成树构建,包含了系统、闭环控制链接和视图内容关联强边缘。 此外,ORB-SLAM还包含全自动地图初始化,这意味着它可以在没有人工干预的情况下,自动开始地图构建过程。在初始化地图的过程中,ORB-SLAM能够选择不同的模型创建平面或者非平面的初始化地图,并且这个过程是自动的,具有良好的鲁棒性。 在地图构建方面,ORB-SLAM使用了云点(地图点)和关键帧(关键图像帧)技术,它们在地图重构中起到了重要的作用。通过严格的筛选,去除冗余的关键帧,系统能够增强追踪的鲁棒性,并提高程序的操作性。 ORB-SLAM还具备实时相机重定位功能,具备良好的旋转不变特性。即使在追踪失败后,系统也可以重新进行定位,且地图能够被重复使用。此外,ORB-SLAM能够处理大量地图云点和关键帧,并通过合适的方法进行挑选,以优化地图的质量。 在实验方面,ORB-SLAM在多个图像数据集上进行了测试,包括New College、TUMRGB-D和KITTI等,表现出了其精度和性能优势。相比于其他最新的单目SLAM系统,ORB-SLAM的性能优势是显而易见的。 ORB-SLAM的结论和讨论部分提到,它基于离散/特征方法与稠密/直接方法对比,并指出了后续工作的方向。论文还包含了一个附录,介绍非线性优化和捆集调整等内容,并列出了参考文献。 ORB-SLAM是一个功能全面、具有创新性的单目SLAM系统,它的出现极大地推动了单目视觉SLAM技术的发展,使其在实时性和准确性方面都达到了新的高度。它为未来研究提供了宝贵的经验和启示,尤其在处理复杂场景以及优化系统性能方面,为SLAM技术的发展奠定了重要的基础。
2024-08-30 13:43:19 2.01MB 单目SLAM
1
SLAM十四讲依赖 Ceres、g2o优化库,Windows下的编译较为困难。以下为VS的配置以及编译好的 1.头文件 D:\include\Ceres_Install\install\ceres\include;D:\include\Ceres_Install\install\glog\include;D:\include\Ceres_Install\install\gflags\include;D:\include\Ceres_Install\install\suitesparse\include;D:\include\eigen-3.4.0\eigen-3.4.0;D:\include\opencv\opencv\build\include\opencv2;D:\include\opencv\opencv\build\include;$(IncludePath)
2024-07-07 16:49:54 124.08MB opencv windows
1
STM32是由意法半导体(STMicroelectronics)公司推出的基于ARM Cortex-M内核的高性能、低功耗、高性价比32位微控制器系列。自其面世以来,STM32凭借其广泛的适用性和卓越的特性,已成为嵌入式系统设计领域的主流选择之一,广泛应用于工业控制、消费电子、物联网、汽车电子、医疗设备、智能家居等多个领域。 内核与架构 STM32产品线采用了不同版本的ARM Cortex-M内核,包括M0、M0+、M3、M4、M7等,分别对应不同级别的性能需求。这些内核提供单周期乘法、硬件除法、DSP指令集、浮点单元(FPU)等功能,以满足不同应用场景中的计算密集型任务需求。处理器架构遵循哈佛结构,具有独立的指令总线和数据总线,确保高效的代码执行和数据访问。 丰富的外设与接口 STM32微控制器集成了丰富的外设资源,以适应各种复杂系统设计。这些外设包括但不限于: 通信接口:如USART、UART、SPI、I2C、CAN、USB(全速/高速)、Ethernet、无线连接模块(如BLE、Wi-Fi)等,用于实现设备间的串行通信和网络连接。 定时器:多种通用定时器、高级定时器、基本定时器以及PWM输出,支持定时、计数、脉冲捕获、电机控制等多种功能。 模拟外设:高精度ADC(模数转换器)、DAC(数模转换器)、比较器、温度传感器等,用于采集和处理模拟信号。 存储器:内置Flash和SRAM,容量从几KB到几MB不等,满足不同应用的数据存储和运行空间需求。部分型号还支持外部存储器接口(如FSMC、Octo-SPI)以扩展存储能力。 安全与保护机制:如加密加速器、安全单元、内存保护单元(MPU)、看门狗定时器、时钟安全系统(CSS)等,保障系统安全稳定运行。 开发环境与生态系统 STM32拥有强大的软件支持和生态系统,简化开发流程并加速产品上市时间: 开发工具:官方提供STM32CubeMX初始化配置工具,帮助开发者快速进行项目设置、外设配置及代码生成。此外,还有STM32CubeIDE集成开发环境,集成了编译器、调试器和仿真器支持。 软件库:STM32Cube软件包包含HAL(硬件抽象层)库和LL(低层)库,前者提供跨平台、跨系列的统一API接口,后者直接面向寄存器提供高效访问。同时,还提供各类外设驱动、中间件组件(如FreeRTOS、FatFS、LwIP等)以及特定应用框架(如STM32Cube.AI for AI推理)。 社区与资源:ST官方社区、论坛、博客、技术文档、培训材料、应用笔记、用户案例等资源丰富,为开发者提供全方位的技术支持和交流平台。 产品线与封装 STM32产品线按性能、功耗、外设组合等特性划分为多个子系列,如STM32F、STM32L、STM32G、STM32H等,每个子系列下又包含多种型号,以适应不同成本、性能、尺寸和功耗要求。封装形式多样,从小型QFN、LQFP到大型BGA,满足不同应用场景的封装密度和散热需求。 综上所述,STM32微控制器以其强大的内核性能、丰富的外设集成、完善的开发支持和广泛的市场应用,为嵌入式系统设计提供了高度灵活且极具竞争力的解决方案。
2024-06-26 15:12:23 15.14MB STM32 课程设计 微控制器
二维激光slam导航算法move_base改进版本 通过在move_base_params.yaml中配置参数可实现移动机器人的二次调整,解决机器人定位精度设置太高而影响到达目标点的概率底的问题。 pid_kp: 0.5 pid_kd: 0.5 pid_ki: 0.1 #超时时间 pid_time_out: 200 #目标位置精度,不依靠导航调整,自动通过pid调整 pid_xy_goal_tolerance: 0.005 #目标角度精度,不依靠导航调整,自动通过pid调整 pid_yaw_goal_tolerance: 0.005 #目标位置精度容忍值 pid_tolerate_xy_goal_tolerance: 0.01 #目标角度精度容忍值 pid_tolerate_yaw_goal_tolerance: 0.01 #大于30cm时不能调整,误差太大 pid_distance_threshold: 0.3 pid_isStartPid: true #是否是全向底盘 isOmni: false 视频地址:https://b23.tv/JYhZ8ig
2024-06-21 17:17:35 45KB
1
slamUbuntu20.04 ROS1 noetic版本 A-LOAM跑kitti
2024-04-30 19:05:25 149.56MB slam kitti
1
20230727无人机SLAM与路径规划 PPT
2024-04-28 16:42:58 49.96MB SLAM 路径规划
1
所有的坑已经走过了,完美复现
2024-04-24 11:04:20 3.17MB 毕业设计
1
平面SLAM 此仓库提出了一种RGB-D SLAM系统,该系统是专门为结构化环境设计的,旨在通过依赖于从周围提取的几何特征来提高跟踪和映射精度。 更多细节可以在我们的论文中找到( 和 )。 作者:李艳艳,拉扎·尤努斯,尼古拉斯·布拉施,纳西尔·纳瓦布和费德里科·托巴里 执照 PlanarSLAM是根据发行的。 出于商业目的,请与作者联系:yanyan.li(at)tum.de。 如果您在学术作品中使用PlanarSLAM,请引用: inproceedings{Li2021PlanarSLAM, author = {Li, Yanyan and Yunus, Raza and Brasch, Nikolas and Navab, Nassir and Tombari, Federico}, title = {RGB-D SLAM with Structural Regula
2024-04-12 11:18:20 41.58MB
1