STM32使用HAL库驱动ST7789的相关代码,包含软件和硬件。 可查看原文链接:https://blog.csdn.net/wan1234512/article/details/147461868?spm=1011.2415.3001.5331 在嵌入式开发领域,STM32微控制器因其高性能、低成本和丰富的外设支持而广受欢迎。ST7789是一种常用的TFT LCD驱动IC,能够提供清晰的显示效果,常用于小型显示屏模块。而HAL库是ST官方提供的硬件抽象层库,旨在为开发者提供一个简化的硬件编程接口。将ST7789驱动集成到STM32开发环境中,不仅可以增强显示功能,还可以在多种应用中实现用户交互界面。 为了实现这一目标,通常需要将ST7789的硬件SPI接口或软件SPI接口与STM32微控制器连接。硬件SPI通信速度更快,效率更高,适合于对速度有要求的场合;而软件SPI则不需要额外的SPI外设,占用更多的CPU资源,但可以节省硬件引脚,适合于引脚资源紧张的场合。在使用HAL库驱动ST7789时,开发人员可以通过配置相应的SPI参数,如时钟频率、数据格式等,实现与显示屏的数据通信。 本项目内容包含以下几个部分: 1. keilkilll.bat:这可能是一个批处理文件,用于在Windows环境下清理或重置Keil MDK-ARM集成开发环境的某些配置或缓存。在进行项目构建或调试之前,运行此文件可能是为了确保环境的纯净状态。 2. Project.ioc:这应该是一个由STM32CubeMX生成的项目初始化文件,用于在Keil MDK-ARM中创建一个基于STM32微控制器的项目。通过STM32CubeMX工具,用户可以选择特定的MCU型号,并配置其外设参数,最终导出初始化代码。这极大地简化了项目创建和配置的过程。 3. .mxproject:这是一个基于STM32CubeMX生成的项目配置文件,包含了项目结构和外设配置的信息。这个文件可以用于导入到Keil MDK-ARM项目中,确保项目与CubeMX工具生成的配置保持一致。 4. Doc.txt:这个文档可能包含了项目相关的信息,如硬件连接说明、软件版本要求、使用说明以及可能的已知问题和解决方案。文档是任何项目的重要组成部分,有助于项目维护和交接。 5. Drivers:这个文件夹中包含了STM32微控制器的驱动程序代码,可能包括HAL库文件、中间件、以及针对ST7789显示屏的驱动实现。在嵌入式开发中,驱动层是连接硬件与应用层的关键环节。 6. Core:这个文件夹通常包含项目的核心代码,包括主函数、中断服务函数等,以及对HAL库函数的调用。在这个部分,开发者会编写应用程序逻辑,如初始化外设、处理用户输入和更新显示屏内容。 7. User:这个文件夹包含了用户自定义的代码文件,允许开发者添加特定的应用功能,如图形界面、数据处理算法等。在此文件夹中,用户可以实现特定的业务逻辑,以满足特定项目的需求。 8. MDK-ARM:这是Keil公司推出的针对ARM处理器的集成开发环境,广泛应用于嵌入式系统的开发。它提供了代码编辑、编译、调试等一系列开发功能,支持多种ARM处理器。 本项目是一个完整的STM32开发套件,不仅包含驱动ST7789显示屏的HAL库代码,还包括项目构建所需的各种文件。开发者可以基于此项目快速开始开发,或将其作为参考来学习如何在STM32微控制器上驱动TFT LCD显示屏。
2025-11-21 11:33:07 697KB stm32
1
BMP388是一款高度集成的数字压力和温度传感器,由博世(Bosch)公司生产,常用于物联网、环境监测、无人机等领域的气压和温度测量。在单片机开发中,为了获取BMP388的数据,我们需要编写驱动程序,其中SPI(Serial Peripheral Interface)通信协议是一种常见的接口方式,因其高效、简单而被广泛采用。 我们需要了解SPI通信的基本原理。SPI是一种同步串行通信协议,它允许一个主设备(Master)与一个或多个从设备(Slave)进行全双工数据传输。在SPI通信中,主设备控制时钟信号(SCLK)和片选信号(CS),从设备则根据这些信号发送和接收数据。SPI通常有四种模式,通过调整主设备的时钟极性和相位来设置。 接下来,我们详细讨论如何用C语言编写BMP388的SPI驱动。我们需要配置单片机的SPI接口,包括设置SPI时钟、数据位宽、工作模式等。这通常涉及到对单片机的寄存器进行编程,如STM32系列的SPI配置会涉及到RCC、GPIO和SPI相关的寄存器。 然后,我们需要定义BMP388的命令字节和地址,因为与BMP388通信通常需要发送特定的命令来读写其内部寄存器。例如,可以定义一个结构体来存储BMP388的寄存器地址和相应的命令代码。 接下来是SPI传输函数的实现,这个函数通常包括初始化SPI接口、设置片选信号、发送命令/数据字节、接收响应数据以及复位片选信号。C语言中的`while`循环和位操作常用于处理SPI的字节传输。 在BMP388的驱动程序中,我们需要初始化传感器,这可能包括配置工作模式、设置采样率、校准参数等。初始化通常通过写入特定的寄存器值完成。之后,我们可以读取BMP388的压力和温度数据,这些数据会存储在传感器的特定寄存器中。读取数据时,可能需要先写入读命令,然后读取响应数据。 为了确保数据的准确性和稳定性,驱动程序还需要处理一些异常情况,如超时检测、错误检查等。在读取数据后,通常需要进行温度和压力的补偿计算,以得到更精确的测量结果。BMP388的规格书中会提供必要的数学模型和校准系数。 为了让其他应用程序能够方便地使用BMP388驱动,我们可以设计一个API(Application Programming Interface),包含开始、结束、读取温度和压力等函数。这些函数的接口设计应当简洁明了,易于理解和使用。 总结来说,编写BMP388驱动并使用SPI通信涉及到单片机的SPI接口配置、传感器寄存器的读写、数据处理和异常管理等多个方面。理解SPI通信协议、熟悉单片机硬件接口以及掌握传感器的特性是成功编写驱动的关键。通过这个过程,我们可以深入学习到嵌入式系统开发的实践知识,为更多类似传感器的驱动开发打下坚实基础。
2025-11-21 00:18:00 5KB 单片机开发
1
### SPI总线从机接口实时模拟的实现 #### 概述 SPI(Serial Peripheral Interface)总线是由Motorola公司提出的一种同步串行外设接口标准,用于实现微控制器(MCU)与各种外围器件间的全双工、同步串行通信。SPI总线具有简单高效的特性,仅需四条线(SCLK、MOSI、MISO、SS)就能完成数据的双向传输。然而,像MCS51这样的单片机本身并不具备SPI总线接口,这在一定程度上限制了它们的应用范围。因此,通过软件模拟SPI接口成为了一种实用的解决方案。 #### SPI总线特性与应用 SPI总线能够同时发送和接收串行数据,非常适合于构建主从分布式通信网络。在这种网络中,一个主控制器可以控制数据的流向,并与其他一个或多个从设备进行数据交换。每个从设备只能在主设备的控制下进行数据的接收或发送,数据的传输遵循高位优先的原则。 SPI总线的四根信号线分别是: - SCLK:串行时钟线,用于同步数据传输; - MOSI:主设备输出/从设备输入数据线,用于从主设备向从设备发送数据; - MISO:主设备输入/从设备输出数据线,用于从从设备向主设备发送数据; - SS:片选线,用于选择特定的从设备。 根据时钟信号的不同,SPI总线可以分为四种工作模式,具体取决于时钟的极性和相位。 #### 实现SPI总线的软件模拟 在MCS51系列单片机中,可以通过软件编程模拟SPI总线的操作,包括串行时钟、数据输入和输出等功能。这种方式不仅能够克服硬件上的限制,还能提供灵活的配置选项。本文介绍了一个基于89C52单片机的SPI总线实时系统,该系统实现了主从设备之间的串行通信。 #### 主从机通信协议 在该系统中,主机和从机均工作在SPI方式2。主机定期向从机发送中断请求,以进行初始化或接收所需数据。从机通过外部中断0(对应SS信号)和外部中断1(对应SCLK信号)来响应主机的请求。主机和从机之间的数据交换以五个字节的数据帧形式进行,其中包括一个命令字、三个数据字节和一个校验字节。 #### 系统软件设计 从机的初始化过程涉及对位变量和字节变量的初始化。当从机响应外部中断0时,会完成这些变量的初始化。随后,每当响应一次外部中断1(模拟SCLK),就会在一个时钟周期内完成一位数据的接收。当八位数据接收完毕后,字节指针会递增,并检查是否完成了五个字节的数据接收。如果所有数据接收完成,则会设置一个标志位以指示数据帧的结束。 #### 结论 通过对MCS51系列单片机进行软件模拟SPI总线接口的设计与实现,有效地解决了这类单片机缺乏内置SPI接口的问题。通过合理利用外部中断机制,不仅提高了系统的实时性,还确保了数据的准确传输。此外,这种方式还提供了良好的灵活性,可以根据实际应用需求调整软件配置,从而更好地满足各种通信需求。
2025-11-20 18:03:56 477KB SPI
1
模拟spi的从机,同时通过cs线可以唤醒主机获取从机数据
2025-11-20 18:01:28 4KB spi从机
1
"Vivado AD9653四通道Verilog工程:125M采样率下的SPI配置与LVDS接口自动延时调整工程,代码注释详尽,已在实际项目中成功应用",vivado AD9653四通道verilog源代码工程,125M采样率,包括spi配置,lvds接口自动调整最佳延时,已在实际项目中应用,代码注释详细 ,Vivado; AD9653; 四通道; Verilog源代码工程; 125M采样率; SPI配置; LVDS接口; 自动调整最佳延时; 实际应用; 详细注释,《基于AD9653四通道Verilog工程》- 125M采样率SPI配置与LVDS延时优化
2025-11-19 15:09:23 853KB paas
1
在嵌入式系统开发领域,STM32系列微控制器以其高性能和丰富的功能受到广泛欢迎。特别是STM32G431系列微控制器,由于其优化的实时性能和灵活的电源管理,成为了工业控制和自动化系统中常用的解决方案。本文将详细探讨如何使用STM32G431微控制器通过模拟SPI通信驱动ADS1118高精度模拟数字转换器(ADC),实现多通道电压数据的采集。 ADS1118是一款精度高、功耗低的16位ADC,它支持多达4个差分输入通道或者8个伪差分输入通道,特别适合用于高性能便携式应用。其灵活的输入多路复用器使得ADS1118可以轻松配置为多个不同的测量类型。在本项目中,我们将其配置为四通道输入,以实现对四个不同电压源的测量。 接下来,我们要讨论的是STM32G431微控制器的模拟SPI接口。SPI,即串行外设接口,是一种常用的高速、全双工、同步的通信总线。它允许微控制器与各种外围设备进行数据交换。在某些STM32G431的变体中,并不直接支持SPI硬件接口,因此我们不得不使用软件模拟的方式来实现SPI通信。这种方法虽然牺牲了一些通信速度,但在一些对成本和空间要求较高的场合仍然是一个可行的解决方案。 在实现模拟SPI驱动之前,需要对STM32G431的GPIO(通用输入输出)端口进行适当的配置。通常,需要设置一个GPIO端口作为SCLK(时钟信号线)、一个GPIO端口作为MOSI(主设备数据输出,从设备数据输入线)、一个GPIO端口作为MISO(主设备数据输入,从设备数据输出线)以及一个GPIO端口作为片选(CS)信号线。通过编写相应的软件代码,利用GPIO端口来模拟SPI的时钟信号和数据信号,实现与ADS1118的数据通信。 在软件实现方面,首先需要初始化STM32G431的GPIO端口,然后编写函数来模拟SPI通信协议的时序。这些函数将负责产生正确的时钟信号和数据信号来控制ADS1118。例如,发送一个字节的函数应该确保数据在时钟信号的上升沿或下降沿被正确采样。 一旦SPI通信准备就绪,就可以开始配置ADS1118了。ADS1118可以通过其I2C或SPI接口进行配置,本项目中我们通过模拟SPI接口来配置。ADS1118的配置涉及到多个寄存器的设置,包括数据速率、输入通道选择、增益设置、模式选择等。通过精心配置这些寄存器,可以确保ADS1118以预定的方式工作,从而准确读取输入通道上的电压值。 在配置完成后,我们可以开始读取ADS1118中的电压数据。通常,数据读取会涉及到启动转换命令和读取转换结果的命令。软件需要处理好时序和数据的完整性,确保从ADS1118中读取到正确的数据。一旦数据被读取,就需要将其从原始的16位值转换为实际的电压值。这通常涉及到一些数学运算和对ADS1118参考电压的理解。 当实现整个系统时,还需要考虑错误处理和异常情况,比如通信错误、过压或欠压情况等。为了保证系统的稳定性和可靠性,这些异常情况都需要被软件妥善处理。 通过STM32G431微控制器的模拟SPI接口驱动ADS1118实现四通道电压采集,虽然在实现过程中面临一定的挑战,比如需要精确控制GPIO时序等,但一旦成功,就能在硬件成本和空间受限的条件下实现精确的多通道数据采集,为各种工业和消费电子应用提供了很好的解决方案。
2025-11-15 16:03:20 25.76MB STM32 ADC采集 SPI通信
1
内容概要:本文详细介绍了如何使用Verilog在FPGA上实现W25Q系列(W25Q128/W25Q64/W25Q32/W25Q16)SPI Flash的驱动程序。主要内容涵盖SPI状态机设计、FIFO缓存应用、时钟管理、读ID操作、写使能状态机以及跨时钟域处理等方面的技术细节。文中还提供了丰富的代码片段和实战经验,包括时钟分频、状态机设计、FIFO配置、仿真测试等。此外,针对不同平台(如Cyclone IV和Xilinx Artix-7)的移植注意事项进行了说明,并分享了一些常见的调试技巧和避免的问题。 适合人群:熟悉FPGA开发和Verilog编程的工程师和技术爱好者,尤其是对SPI Flash驱动感兴趣的开发者。 使用场景及目标:适用于需要在FPGA项目中集成W25Q系列SPI Flash的开发者,帮助他们理解和实现高效的SPI Flash驱动程序,提高系统的可靠性和性能。 其他说明:文章不仅提供理论知识,还包括大量实战经验和代码示例,有助于读者更好地掌握相关技术和解决问题。
2025-11-13 14:10:15 351KB FPGA Verilog SPI Flash
1
内容概要:本文详细介绍了作者在FPGA平台上使用Verilog实现160MHz高速SPI通信的经验和技术细节。主要内容涵盖SPI主机和从机的设计思路、具体实现方法以及遇到的问题和解决方案。对于SPI主机部分,作者采用640MHz主时钟四分频生成160MHz SPI时钟,并通过状态机控制数据传输过程,确保了良好的时序特性。针对从机,则采用了双缓冲结构来处理高速数据流,有效解决了最后一个比特的竞争问题。此外,文中还提供了详细的代码片段和调试技巧,如使用特定条件进行数据采样以优化时序性能。 适合人群:对FPGA开发有一定了解并希望深入研究SPI通信机制的硬件工程师或相关领域的研究人员。 使用场景及目标:适用于需要实现高速SPI接口的应用场合,如嵌入式系统、工业自动化等领域。通过学习本文可以掌握如何在FPGA中高效地实现稳定可靠的SPI通信。 其他说明:文中提到的所有代码均已开源发布于GitHub平台,方便读者下载参考。同时,作者还分享了一些实际测量的数据,证明了所提出设计方案的有效性和优越性。
2025-11-07 17:53:01 1.1MB
1
内容概要:本文档详细介绍了国产7044芯片的功能、寄存器配置及SPI通信协议。该芯片具有24位寄存器,通过SPI接口的三个引脚(SLEN、SDATA、SCLK)进行控制。寄存器包括1位读/写命令、2位多字节字段、13位地址字段和8位数据字段。文档描述了典型的读写周期步骤,从主机发送命令到从机响应并执行操作。此外,还详细列出了配置PLL1和PLL2的具体步骤,包括预分频、分频比、参考源选择等。PLL1用于产生122.88MHz频率作为PLL2的输入,PLL2则负责将该频率倍频至2.1GHz~3.5GHz范围内。文档最后提供了详细的寄存器配置代码,涵盖软复位、输入输出配置、延迟调节及输出驱动模式选择等内容。 该芯片应用到FMC-705(4通道全国产 AD采集,每个通道采样率1Gsps或1.25Gsps,分辨率为14bit)
2025-11-07 12:47:53 3.88MB SPI通信 时钟管理 寄存器设置
1
内容概要:本文详细介绍了一项基于Vivado平台的AD9164 FPGA接口设计工程,旨在实现3G采样率的数据传输。工程主要包括JESD204B接口模块、DDS IP核模块和SPI寄存器配置模块。JESD204B接口模块负责高速数据传输,线速率达到5Gbps;DDS IP核模块包含4个DDS IP核,用于生成多频率信号;SPI寄存器配置模块则用于配置AD9164及其他外设的寄存器。此外,文中还涉及顶层控制模块,负责时钟管理和各模块间的协调工作。通过详细的代码示例和分析,展示了如何构建稳定的高速数据传输链路,并提供了许多实用的技术细节和调试技巧。 适合人群:具备一定FPGA开发经验和Verilog编程基础的研发人员,尤其是从事高速数据采集和信号处理领域的工程师。 使用场景及目标:适用于需要实现高速数据传输和多通道信号生成的应用场景,如雷达系统、通信基站等。目标是帮助工程师掌握AD9164接口设计的关键技术和最佳实践,提高系统的稳定性和性能。 其他说明:文中不仅提供了详细的代码实现,还分享了许多宝贵的实战经验和技术细节,有助于读者更好地理解和应用相关技术。
2025-11-06 15:33:52 1.31MB
1