Python编程实战:运用设计模式、并发和程序库创建高质量程序》是一本深入探讨Python编程技术的书籍,旨在帮助读者掌握如何通过应用设计模式、利用并发特性以及有效地使用Python标准库来构建高效、可靠的程序。这本书不仅提供了理论知识,还附带了源码,使得学习更为直观和实践导向。 设计模式是软件开发中的重要概念,它们是经过时间验证的解决方案模板,用于解决常见的编程问题。在Python中,我们可以应用如工厂模式、单例模式、装饰器模式等经典设计模式。例如,工厂模式可以用来创建对象,而单例模式确保一个类只有一个实例。装饰器模式则允许我们动态地修改或扩展函数和类的行为,而无需改动它们的源代码。 并发处理是现代计算中不可或缺的一部分,特别是在多核处理器和分布式系统中。Python提供了多种并发模型,包括线程(threading模块)、进程(multiprocessing模块)以及异步I/O(asyncio模块)。理解这些模型的工作原理以及如何在不同场景下选择合适的模型,对于编写能够充分利用系统资源并提高性能的程序至关重要。 Python的标准库是其强大之处之一,包含了大量预封装的模块和包,涵盖了从网络通信到数据处理的各种功能。例如,requests库用于HTTP请求,numpy和pandas用于科学计算和数据分析,matplotlib和seaborn用于数据可视化,os和sys模块则提供了操作系统交互的功能。掌握这些库的使用可以极大地提高开发效率。 在实战部分,本书可能涵盖如何使用Python进行Web开发(如Django或Flask框架),如何实现数据库操作(如SQLAlchemy或sqlite3),以及如何利用Python进行自动化任务(如使用schedule或APScheduler库)。此外,还可能讨论错误处理、单元测试和集成测试,以确保代码的健壮性和可维护性。 通过学习这本书,读者不仅可以提升Python编程技能,还能学习到如何在实际项目中应用设计原则、并发技术和标准库,从而创建出高质量的Python程序。附带的源码将提供具体的示例,帮助读者更好地理解和应用所学知识。在实践中不断迭代和优化,将使你成为一个更优秀的Python开发者。
2025-09-17 09:30:11 49.75MB 程序设计 python高质量 设计模式
1
NCT等级测试-Python编程一级真题测试卷1图文 一、选择题 1.以下Python表达式中,哪项的值与其它三项不同( ) A.len("my name is james".split()) B.int(4.99) C.sum([1,2,1,1]) D.max([1,2,3,4]) 2.已知字符串a="python",则a[1]的值为( ) A."p" B."py" C."Py" D."y" 3.Python的关系运算符中,用来表示不等于的符号是( ) A.= = B.!= C.>= D.<= 4.下面Python代码运行后,a、b的值为( ) a=23 b=int(a/10) a=(a-b*10)*10 b=a+b print(a,b) A.23 2 B.30 20 C.30 32 D.3 2 5.韦沐沐同学利用Python软件编制程序。初始时,他使用流程图描述算法,在设计输入 、输出数据时使用的图例是( ) A. B. C. D. 6.在用Python编程对数据进行分析的时候,代码pandas.DataFrame.sum( )执行的操作是 A.返回所有列的和 B.返回所有行的和 【Python编程基础知识点】 1. Python表达式的值比较: - `len("my name is james".split())` 计算字符串切片后的列表元素个数,即单词数量,其值为5。 - `int(4.99)` 将浮点数转换为整数,会向下取整,其值为4。 - `sum([1, 2, 1, 1])` 计算列表中所有数字的和,其值为5。 - `max([1, 2, 3, 4])` 返回列表中的最大值,其值为4。 2. 字符串索引: - 对于字符串`a="python"`,`a[1]`表示获取字符串的第二个字符,其值为"y"。 3. 关系运算符: - Python中表示不等于的符号是`!=`。 4. Python代码分析: ```python a=23 b=int(a/10) a=(a-b*10)*10 b=a+b print(a,b) ``` 这段代码将23转换成十进制形式,`a`变为3,`b`变为2,最后打印出`a`和`b`的值,选项D正确。 5. 流程图符号: - 在设计输入、输出数据时,通常使用流线型图例表示数据流动,选项A符合这个描述。 6. Pandas数据分析: - `pandas.DataFrame.sum()` 是Pandas库中用于返回DataFrame所有列或行的和的函数,具体取决于是否指定了轴向。 7. Python合法标识符: - Python的合法标识符不能以数字开头,因此选项B错误。 8. Python多分支选择结构: - Python中实现多分支选择结构最常用的方法是`if-elif-else`结构。 9. 字符串拼接: - `print(a[1]+a[3])` 将字符串的第二个字符和第四个字符拼接,其值为"yt"。 10. Python转义字符: - `\`反斜杠用于转义特殊字符,`\r`表示回车,`\n`表示换行,`\t`表示制表符,`\\"`表示双引号,选项D描述错误。 11. Python变量命名规则: - 变量名不能以数字开头,也不能是保留字,所以选项A、B、C都不正确,选项D(dist)是合法的变量名。 12. Python循环: - 题目要求找到100以内所有能被3整除的正整数,可以使用`for i in range(3, 101, 3):`这样的循环结构。 13. Python循环输出: - `for i in range(1, 5):`循环中,`i`的值在每次迭代后都会增加1,而`s`的值会累加,最后输出时,`i`的值为5,`s`的值为10。 14. Python程序执行: - `print(1**2+2**2+3**2)`的结果是14,所以选项B正确。 15. Python逻辑判断: - `print(66!=66)`会输出`False`,因为66不等于66的逻辑判断结果是False。 16. Python一元二次方程: - 一元二次方程的判别式为`b**2 - 4*a*c`,根据题目,需要填入这个表达式。 - 当判别式大于等于0时,输出实数根,所以第二空应填入`sqrt(d)`。 - 第三空应填入`(-b-math.sqrt(d))/(2*a)`,表示输出方程的另一个实数根。 - 当判别式小于0时,输出"方程无实数根",所以最后一空应填入`print("方程无实数根")`。 17. Python代码实现: - 为了找出1到n之间同时是3和5的倍数的数,可以使用`range(3, n+1, 15)`,因为3和5的最小公倍数是15。 18. 随机数解决百钱白鸡问题: - 使用`random`模块生成随机数,通过循环尝试不同的组合来解决这个问题,通常会涉及到整数的加减乘除运算。 以上是针对NCT一级Python编程真题测试卷涉及的知识点的详细解析。这些知识点涵盖了Python的基础语法、数据类型、控制结构、字符串操作、Pandas库的使用以及算法设计等重要内容。对于学习Python编程的初学者,掌握这些基本概念和操作至关重要。
2025-07-24 12:47:33 104KB python 编程语言 文档资料
1
在当今快速发展的科技时代,编程教育已经成为了理工科教育中的重要一环,而Python作为一门广泛使用的编程语言,也成为了初学者入门的理想选择。NCT等级测试则是对学习者Python编程能力的一种评估手段。资料NCT等级测试-Python编程一级真题测试卷1是针对具有一定基础的Python学习者,它能有效检验学习者在初级阶段对Python基础知识的掌握程度,以及解决实际编程问题的能力。 这份测试卷覆盖了Python编程的基础知识点,包含了数据类型、变量的使用、基本的控制结构,如条件判断和循环、函数的定义和调用、以及一些基本的内置函数和模块的使用。此外,测试题型可能还会涉及简单的算法逻辑题、错误调试题以及代码阅读理解题,以此来考察学习者对Python编程语言的综合应用能力。 通过这样的测试,学习者可以了解自己在Python编程学习过程中的不足之处,从而有针对性地进行复习和提高。对于教育机构和培训机构来说,这样的测试卷也可用于评估教学效果,改进教学方法。而对于编程初学者而言,参加等级测试是检验学习效果、提升自我编程能力的重要途径,同时也能为今后的深入学习和编程工作积累经验。 随着人工智能、数据分析、网络爬虫等领域的快速发展,Python语言的应用越来越广泛,掌握Python的编程技能对于提升个人竞争力有着重要意义。因此,不管是对个人学习者还是专业培训机构而言,NCT等级测试-Python编程一级真题测试卷1都具有非常重要的参考价值。通过解决这些测试题,不仅可以提高编程技巧,还能加深对Python编程逻辑的理解,为未来解决更复杂编程问题打下坚实的基础。 这份测试卷的出现,对于Python教育者来说,能够作为考核学生学习成果的有效工具。对于学生而言,它不仅是一个自我检验的平台,也是学习上的一个激励和指导。在准备这份测试的过程中,学生需要复习和巩固之前所学的编程知识,从而能够在测试中展现出真实水平,同时也能发现学习中的短板,为未来的学习方向提供指引。对于编程初学者来说,这是一个难得的自我提升的机会,通过正式的测试来检验自己的编程水平,无疑能够为日后的编程学习之路指明方向。 通过这份测试卷,我们可以看出Python编程教育的重视程度,以及对学习者能力水平的期望。对于编程初学者来说,掌握好基础是构建高级编程技能的基石,因此这份一级真题测试卷是每位Python学习者在学习之路上的一个重要里程碑。通过不断地练习和测试,学习者可以更清晰地认识自己,从而在Python编程的道路上不断前进,最终达到更高的水平。
2025-07-24 12:43:38 161KB
1
知识点: 一、基础语法理解 1. Python列表和其特点,包括列表的创建和索引访问。 2. Python的标识符规则,包括大小写敏感性和关键字的使用。 3. Python数据类型及其转换,如整数、浮点数和字符串之间的转换。 4. Python运算符的使用,包括逻辑运算符、比较运算符和算术运算符。 5. Python输入输出函数的区别,主要使用input()和print()函数。 二、程序控制结构 1. Python中的条件语句if...elif...else的使用方法和条件分支的测试。 2. Python中的循环控制结构,如while循环的使用和流程控制。 3. Python函数的定义和调用,理解函数的基本概念和作用。 三、问题解决思维 1. 理解算法在问题解决中的核心作用。 2. 掌握编程语言解决问题的基本思路和方法。 3. 利用Python解决实际问题,如天气数据的处理和图形绘制。 四、Python高级特性 1. Python的异常处理机制。 2. Python中的模块导入和使用。 3. Python中数据的集合类型,如元组和字典的使用。 五、Python应用 1. Python在数据分析和科学计算中的应用。 2. Python在自动化测试和网络爬虫开发中的应用。 3. Python在机器学习和人工智能领域的应用。 六、编程实践 1. 对Python代码进行测试,确保程序的正确性。 2. 编写Python程序以解决特定问题,如绘制气温图和模拟圆周率计算。 3. 掌握使用图形库绘制复杂图形的方法。 七、Python知识拓展 1. Python在不同领域的专业应用,如Web开发和游戏开发。 2. Python编程思想和编程范式的理解。 3. Python语言的持续学习和进阶。
2025-07-24 12:39:26 265KB
1
**CVXOPT Toolbox** 是一个基于Python编程语言的免费软件包,主要用于凸优化问题的解决。这个工具箱的独特之处在于它提供了一个MATLAB接口,使得习惯于使用MATLAB的用户能够在MATLAB环境中利用CVXOPT的强大功能进行优化计算。这个接口使得在MATLAB中调用Python的优化库成为可能,拓宽了MATLAB用户的优化工具选择。 CVXOPT库本身包含了一系列用于处理凸优化问题的算法,如线性规划(LP)、二次规划(QP)、二次锥规划(QCP)以及更复杂的凸优化问题。这些算法通常具有高效的性能和良好的数值稳定性,能够处理大规模的优化任务。通过MATLAB接口,用户可以方便地将这些优化算法集成到他们的MATLAB代码中,而无需深入学习Python语言的细节。 在使用CVXOPT Toolbox之前,用户需要确保已经安装了Python环境以及CVXOPT库。这通常可以通过Python的包管理器如pip进行安装。一旦安装完成,MATLAB用户可以加载CVXOPT Toolbox的.mltbx文件,将CVXOPT的功能引入MATLAB工作空间。同时,.zip文件可能包含了额外的文档或示例代码,用户可以解压后查看具体的内容。 **凸优化** 是一种数学优化方法,主要处理那些目标函数和约束条件都是凸函数的问题。在许多工程、经济和机器学习领域,凸优化是求解最优化问题的重要手段,因为它能保证找到全局最优解,而不是局部最优解。CVXOPT支持的优化问题类型广泛,包括但不限于: 1. **线性规划(LP)**:目标函数和约束条件都是线性的,适用于资源分配、生产计划等问题。 2. **二次规划(QP)**:目标函数为二次函数,约束条件可以是线性的。广泛应用于工程设计、信号处理等领域。 3. **二次锥规划(QCP)**:扩展了二次规划,允许约束条件包含锥型结构,如对称正半定矩阵的锥体,常用于处理非线性优化问题。 **MATLAB接口** 的实现使得用户可以使用MATLAB熟悉的语法定义优化问题,然后通过CVXOPT的底层算法进行求解。这种混合使用Python库和MATLAB的方式,既利用了MATLAB的便捷性,又享受到了Python库的高性能优化算法。 为了更好地理解和使用CVXOPT Toolbox,用户可以参考其官方文档(http://www.cvxopt.org),其中详细介绍了如何在MATLAB中安装和使用该工具箱,以及如何定义和解决各种类型的凸优化问题。文档中可能还包含了示例代码,帮助用户快速上手。同时,用户可以通过解压提供的.CVXOPT%20Toolbox.zip文件来获取更多的帮助材料和实例。 CVXOPT Toolbox是MATLAB用户解决凸优化问题的一个强大工具,结合Python的高效优化算法,提供了丰富的功能和便利的使用体验。通过熟悉其接口和算法,用户可以有效地解决实际问题,并提升优化任务的效率和精度。
2025-07-15 11:07:13 34KB matlab
1
pyside本文将为您介绍PySide GUI应用程序的开发,涵盖知识领域、技术关键词、内容关键词和用途。本文适用于对PySide GUI开发感兴趣的读者,希望您能在阅读完本文后,对PySide GUI应用程序的开发有一个全面的了解。 知识领域:PySide GUI应用程序开发 技术关键词:Python, PySide, GUI, QApplication, QWidget, 布局管理器, 信号与槽, 事件处理, 打包与分发 内容关键词:窗口创建, 控件添加, 信号与槽连接, 窗口布局, 窗口属性设置, 事件处理机制, 应用程序打包, 应用程序分发 用途:本文将帮助您了解如何使用PySide库开发GUI应用程序,学会创建窗口、添加控件、处理用户交互,以及如何将应用程序打包成可执行文件。通过阅读本文,您可以掌握PySide GUI应用程序开发的基本技巧,提升编程能力,并为后续开发更复杂的应用程序奠定基础。
2025-06-22 20:24:54 168KB python 编程语言 PySide
1
Ceder Naomi - The Quick Python Book, 4th Edition - 2025.pdf内容概要:本书《The Quick Python Book, 4th Edition》由Naomi Ceder撰写,旨在为读者提供从基础到高级的Python编程技能。书中涵盖了Python的核心理念与最佳实践,如Python之禅(The Zen of Python),强调了简洁、明确和可读性的编程原则。作者分享了她25年来的Python编程经验,讲述了Python在系统管理、Web应用、数据库管理和数据分析等多个领域的广泛应用。此外,书中还深入探讨了Python的最新特性,包括排序、字符串处理、字典操作、控制流、函数定义以及面向对象编程等内容。书中提供了大量实例和练习,帮助读者更好地理解和掌握Python编程技巧。 适合人群:适合初学者和有一定编程基础的研发人员,尤其是希望快速高效地学习Python并应用于实际项目中的读者。 使用场景及目标:①通过实际案例和练习,帮助读者掌握Python的基本语法和高级特性;②引导读者理解Python的最佳实践,如Python之禅所倡导的原则;③介绍Python在不同应用场景下的使用方法,如数据处理、Web开发等;④通过AI代码生成工具的对比,帮助读者了解如何优化代码性能和解决实际问题。 其他说明:本书不仅是一本技术手册,更是一部融入了作者多年编程经验和社区感悟的作品。书中特别强调了Python社区的重要性,鼓励读者加入这个充满活力和支持的大家庭。此外,书中还涉及了一些关于AI代码生成工具的讨论,展示了如何利用这些工具提高编程效率,同时也提醒读者在使用时需要注意的问题。
2025-05-22 15:07:39 13.33MB Python 编程书籍 数据处理 命令行工具
1
PySimpleGUI是一个Python GUI编程库,它的目标是让创建图形用户界面变得简单而快速。PySimpleGUI提供了一种简单而直观的方式来创建桌面应用程序,无需繁琐的代码或复杂的GUI框架。是一个适合初学者和有经验的Python开发人员使用的GUI库,它使得创建图形用户界面变得简单而有趣。如果您想要开始学习GUI编程,PySimpleGUI是一个不错的选择。最新版本都是5.0以上的版本,只能免费试用30天,然后会收费,这里提供一个可用的4.60版本,只需要使用python setup.py install命令即可安装成功。
2025-04-30 18:45:50 1.37MB python 编程语言 PySimpleGUI
1
Python快速编程入门习题参考答案 Python快速编程入门习题参考答案全文共40页,当前为第1页。Python快速编程入门习题参考答案全文共40页,当前为第1页。Python概述 Python快速编程入门习题参考答案全文共40页,当前为第1页。 Python快速编程入门习题参考答案全文共40页,当前为第1页。 填空题 Python是面向 的高级语言。 Python可以在多种平台运行,这体现了Python语言 的特性。 Python模块的本质是 文件。 使用 关键字可以在当前程序中导入模块。 使用 语句可以将指定模块中的全部内容导入当前程序。 判断题 相比C++程序,Python程序的代码更加简洁、语法更加优美,但效率较低。( ) "from 模块名 import *"语句与"import 模块名"都能导入指定模块的全部内容,相比之下,from…import *导入的内容无须指定模块名,可直接调用,使用更加方便,因此更推荐在程序中此种方式导入指定模块的全部内容。( ) Python3.x版本完全兼容Python2.x。( ) PyCharm是Python的集成开发环境。( ) 模块 【Python编程语言基础】 Python是一种面向对象的高级编程语言,其设计哲学强调代码的可读性和简洁的语法,使得编写程序更加高效。Python语言的一大特点是跨平台性,它可以在多种操作系统上运行,如Windows、Linux、Mac OS等,体现了其高度的可移植性。 在Python中,模块是代码组织的基本单元,它们本质是包含Python定义和语句的文本文件,通常以.py为扩展名。通过`import`关键字,我们可以将模块引入到当前程序中,以便使用其中定义的函数、类或变量。如果想要一次性导入模块的所有内容,可以使用`from 模块名 import *`语句,但这并不总是推荐的做法,因为它可能导致命名空间的污染,使代码可读性下降。相比之下,更常见的做法是使用`import 模块名`,然后通过`模块名.成员名`的方式访问模块中的内容。 在Python的性能方面,相比于编译型语言如C++,Python的执行速度确实可能较慢,但它的开发速度和可维护性通常优于C++,尤其在处理大量逻辑和数据操作时,Python的高级功能和丰富的库能显著提高开发效率。 PyCharm是广泛使用的Python集成开发环境(IDE),提供了代码编辑、调试、测试和项目管理等多种功能,极大地便利了Python开发工作。 对于Python的版本,Python3.x与Python2.x之间存在不兼容性,尤其是在某些语法和库的使用上。虽然Python3.x在很多方面进行了改进,但并非所有2.x版本的代码都能无缝迁移到3.x版本。 Python的应用领域非常广泛,包括Web开发、科学计算、数据分析、自动化运维、机器学习等。例如,Web开发中常用的框架有Django和Flask;科学计算领域有NumPy、Pandas和SciPy等库;在游戏开发中,虽然Python不是首选,但也有Pygame等库支持。 Python的特点包括但不限于: 1. 简洁明了的语法,易于学习和理解。 2. 高级语言,自动内存管理,无需关注底层细节。 3. 动态类型系统,变量在运行时确定类型。 4. 丰富的标准库和第三方库,覆盖众多领域。 5. 支持多种编程范式,如面向对象、命令式、函数式和面向切面编程。 导入模块的常见方法包括: 1. `import 模块名`:导入整个模块,通过`模块名.成员`访问其内容。 2. `from 模块名 import 成员`:导入模块中的特定成员,直接使用`成员`即可。 3. `from 模块名 import *`:导入模块所有成员,直接使用成员名,但不推荐。 Python中的模块、包和库都是代码组织和复用的形式。模块是基本单位,包含Python代码;包是模块的容器,可以包含子包和模块,通过`.`进行层级引用;库是集合多个模块或包的大型代码集合,常包含多个功能相关的模块。 在编程题中,涉及到了基础的编程练习,如: 1. 计算整数序列之和,使用循环和累加。 2. 对输入的三个整数进行排序,利用列表和内置的`sort()`函数。 3. 打印九九乘法表,双层循环实现。 4. 使用turtle库绘制多个大小不同的五角星,展示了图形绘制功能。 这些习题涵盖了Python的基本语法和控制结构,是初学者巩固基础知识的好材料。通过解决这些问题,学习者可以更好地理解Python的核心概念,并提升实际编程能力。
2025-04-07 19:46:32 193KB python 编程语言 文档资料
1
基于遗传算法的动态柔性作业车间调度问题:重调度策略与优化结果分析,遗传算法 动态柔性作业车间调度问题fjsp 重调度,动态调度,车间调度,优化结果良好,算法模块化python 编程,可供后期灵活修改。 基于 ga算法的柔性作业车间 机器故障重调度 右移重调度。 完全重调度 ,遗传算法; 动态柔性作业车间调度问题(FJSP); 重调度; 动态调度; 机器故障重调度; 右移重调度; 完全重调度; 算法模块化; Python编程。,"GA算法在动态柔性作业车间的重调度优化策略" 在现代制造业的车间调度领域中,动态柔性作业车间调度问题(Flexible Job Shop Scheduling Problem, FJSP)是其中最为复杂和具有挑战性的问题之一。该问题涉及在不断变化的生产环境中,对多种不同的作业进行有效的时间分配和资源分配,以期达到最优化的生产效率和最低的制造成本。随着信息技术的发展,传统的静态调度方法已经无法满足快速响应市场变化的需求,因此,动态调度和重调度策略的研究变得日益重要。 遗传算法(Genetic Algorithm, GA)作为一种模拟自然选择和遗传学机制的搜索和优化算法,因其在处理复杂问题和大规模搜索空间中的独特优势而被广泛应用于动态FJSP的求解。通过模拟生物进化过程中的选择、交叉和变异操作,遗传算法能够在多次迭代中逐渐找到问题的近似最优解。 在动态FJSP中,作业的到达时间、机器的故障、订单的取消和变更等都是经常发生的情况,这些动态变化要求调度系统能够迅速做出反应,并调整原有的调度计划,以适应新的环境。因此,重调度策略的设计变得至关重要。重调度策略可以分为几种不同的类型,包括右移重调度、完全重调度等,每种策略都有其特定的应用场景和优缺点。 右移重调度策略主要关注在不改变作业顺序的前提下,对受影响的作业进行时间上的调整。这种策略的优点在于能够保持作业顺序的稳定性,避免造成生产计划的混乱,但其缺点是可能导致部分资源的利用率下降。完全重调度则是当系统发生重大变化时,对所有作业的调度计划进行重新规划,虽然这种策略能够充分利用系统资源,但其计算代价相对较大,需要快速高效的优化算法支撑。 在优化结果方面,遗传算法在动态FJSP中能够找到质量较高的调度方案。优化结果的良好不仅表现在生产效率的提高和制造成本的降低上,还体现在算法自身的性能上,如收敛速度和解的多样性。为了进一步提升遗传算法在动态FJSP中的应用效果,算法的模块化设计和Python编程的使用成为关键。模块化设计使得算法结构清晰,便于后期的维护和修改,而Python编程则因其简洁和高效的特点,为算法的快速开发和运行提供了良好的支持。 遗传算法在动态柔性作业车间调度问题中的应用,特别是在动态调度和重调度策略方面的研究,已经成为提升制造业生产调度智能化和自动化水平的重要途径。通过不断优化算法结构和提高计算效率,可以为解决实际生产中的动态调度问题提供科学的方法论指导和技术支持。
2025-03-29 21:16:39 92KB 柔性数组
1