用PyTorch实现MNIST手写数字识别(整套流程,附对应源码文件)简单小例子 环境配置 在开始之前,我们需要进行一些环境配置,包括安装PyTorch、numpy和matplotlib等必要的Python库。 安装Anaconda 我们可以从官网下载适合自己系统的Anaconda安装包,安装时需要勾选添加环境变量选项。 创建环境 在Anaconda Prompt中输入以下命令: conda create --name pytorch_env python=3.8 该命令将创建一个名为pytorch_env的环境,并使用Python 3.8版本。
2023-04-07 21:25:47 6KB pytorch pytorch 软件/插件
1
mnist手写数字识别的代码实例,内容精简,适合初学者
2023-01-02 20:27:39 110KB tensorflow2.0 mnist手写识别
1
matlab集成c代码 现当今机器学习/深度学习技术在某些具体垂直领域已被大量广泛应用到现实世界中,已经不再像前几年那么“火热”,与之对应的各类深度学习框架也是“百花齐放,百家争鸣”,框架终究只是个工具,不过简化了从“零”开始复杂繁琐的工作,让很多普通人都可以快速入门。本博客不单纯完成一个任务,也不涉及过多理论推导,而是真正体会到算法工作一步步原理,逐步实现,岂不乐乎? 以经典的识别为例,逐步一步步实现通用的深度学习网络模型架构,不调用任何第三方库和框架,使用matlab进行快速搭建、训练和测试。程序中所涉及的理论知识及使用的变量名严格按照、 这两篇博客的符号和公式进行。MNIST手写数字包含60000张训练图片,10000张测试图片,图片大小为28×28,灰度图像,给出的是四个二进制存储的文件,分别为训练和测试的数据集和标签文件。假设读者已经明白所给链接博客的理论知识(不清楚可以参考更多文后的文献和程序代码中给的链接),我们接下来进行下面的具体实现。 网络架构设计 考虑到网络简单和易用性,根据MNIST数据集特点,设计了四层网络层,分别为conv+relu+meanPool、conv
2022-11-30 16:43:36 3.02MB 系统开源
1
说在前头 本文是使用BP神经网络中的softmax回归模型实现MNIST手写数字识别,实际上能实现MNIST手写数字识别的神经网络还有CNN(卷积神经网络),下一篇可能会写。 Tensorflow是个什么东西 Tensorflow是一个采用 数据流图,用于数值计算的开源软件库。节点在图中表示数学操作,图中的线则表示在节点间相互联系的多维数据数组,即张量(Tensor)。 数据流图用“结点”和“线”的有向图来描述数学计算。“节点” 一般用来表示施加的数学操作,但也可以表示数据输入的起点/输出的终点,或者是读取/写入持久变量的终点。“线”表示“节点”之间的输入/输出关系。这些数据“线”可以输运“
2022-11-29 16:01:17 169KB ens fl flow
1
文件夹说明: 1. ./divert -- 全部进行像素反转后的 60000 张训练集图片; 2. ./divert_test -- 全部进行像素反转后的 60000 张测试集图片; 3. ./rotate -- 全部进行图像旋转后的 60000 张训练集图片; 4. ./rotate_test -- 全部进行图像旋转后的 60000 张测试集图片; 5. ./divert_and_rotate -- 像素反转后的 30000 张训练集图片 + 图像旋转后的 30000 张训练集图片; 6. ./divert_and_rotate_test -- 像素反转后的 30000 张测试集图片 + 图像旋转后的 30000 张测试集图片; 7. ./raw -- 手动创建的测试集图片,1-9 没有进行旋转,r1-r9 进行了不同角度的旋转 8. label_train.txt -- 训练集 label 9. label_test.txt -- 测试集label
2022-11-22 11:25:25 135MB pytorch MNIST deep learning
1
工程文件、数据集、源码下载; 深度学习 pytorch手写数字识别 MNIST数据集 解析+详细注释;
2022-11-01 20:06:03 33.16MB MNIST手写数字识别 深度学习 pytorch
1
我们将在PyTorch中构建一个简单的卷积神经网络,并使用MNIST数据集训练它识别手写数字。在MNIST数据集上训练分类器可以看作是图像识别的“hello world”。
该资源包含Mnist数据集手写数字识别的训练及预测代码,mnist在神经网络准确率与迭代次数关系,分别在tensorflow和pytorch框架下,以及如何查看checkpoint中参数的相关内容,已经相关的checkpoint文件
2022-10-13 21:11:05 61.09MB Mnist数据集 tensorflow pytorch
1
该程序为纯手写代码, 不使用任何深度学习相关库。网络使用卷积+全连接,且使用Dropout 在5分钟内实现97%以上的准确度。
2022-07-15 12:05:54 1KB 深度学习 手写数字识别 不使用库
1
MNIST手写数字识别代码,使用Dataset和DataLoader库处理数据,可以通过本代码学习数据的处理过程。 本代码包括了完整的数据加载、模型定义以及训练测试部分,可以正常运行。
2022-06-09 20:06:31 4KB MNIST 深度学习
1