神经网络实现分类matlab代码人工神经网络的 LRP 工具箱 (1.3.0) 逐层相关性传播 (LRP) 算法通过使用学习模型本身的拓扑将相关性分数归因于输入的重要组成部分来解释特定于给定数据点的分类器的预测。 LRP 工具箱为支持 Matlab 和 python 的人工神经网络提供了简单且可访问的 LRP 独立实现。 工具箱实现了 Caffe 深度学习框架的 LRP 功能,作为 10/2015 发布的 Caffe 源代码的扩展。 Matlab 和 python 的实现旨在作为沙箱或游乐场,让用户熟悉 LRP 算法,因此在实现时考虑了可读性和透明度。 可以使用原始文本格式、Matlab 的 .mat 文件和 python/numpy 的 .npy 格式导入和导出模型和数据。 查看 LRP 工具箱的实际应用 要在浏览器中试用基于 python 的 MNIST 演示或基于 Caffe 的 ImageNet 演示,请单击相应的面板: MNIST 图片 文本 基于神经网络的简单 LRP 演示,可预测手写数字并使用 MNIST 数据集进行训练。 基于使用 Caffe 实现的神经网络的更复杂的
2023-04-18 14:42:01 1.8GB 系统开源
1
易飞ERP的LRP相关问题集,神马提供的,适合易飞ERP新手学习。
2022-12-16 08:53:45 47KB 易飞,LRP
1
全部算例 客户文件:客户编号、x坐标、y坐标、需求 仓库文件:仓库编号、x坐标、y坐标、容量、固定成本、可变成本
2022-10-07 10:25:53 19KB LRP选址路径问题 算例数据
1
LRP
2022-06-24 16:46:12 1008KB HTML
1
分层相关传播,用于解释基于MRI的阿尔茨海默氏病分类中的深层神经网络决策 莫里茨·博莱(MoritzBöhle),法比安·埃特尔(Fabian Eitel),马丁·韦甘特(Martin Weygandt)和克斯坦·里特 预印本: : 摘要:深层神经网络已导致许多医学成像任务的最新成果,包括基于结构磁共振成像(MRI)数据的阿尔茨海默氏病(AD)检测。 但是,网络决策通常被认为是高度不透明的,因此很难将这些算法应用于临床程序。 在这项研究中,我们建议使用分层相关传播(LRP)来可视化基于MRI数据的AD的卷积神经网络决策。 与其他可视化方法类似,LRP在输入空间中生成一个热图,以指示每个体素对最终分类结果做出贡献的重要性/相关性。 与引导反向传播产生的磁化率图相反(“体素的哪个变化最能改变结局?”),LRP方法能够直接突出显示输入空间中对网络分类的积极贡献。 特别是,我们表明(1)LRP
2022-04-14 16:20:12 3.32MB JupyterNotebook
1
鼎捷易飞ERP 批次需求计划(LRP)功能文档,希望能够协助相关朋友学习使用
2022-01-20 15:06:59 3.25MB LRP
1
未发放的计划统一维护 未发放的计划,可以统一维护 方便全面考虑各需求的优先顺序,结合产能的考虑,统一调整、维护计划(产能不在系统中处理) 统一维护的结果,能够保存到各自的计划 已经发放的计划不再提供维护功能---已经发放下去的工单、采购单等单据可以用变更单进行变更 系统会建立【工作号】,用来关联和记录统一维护的计划信息 ‹页首› ‹日期/时间› ‹页尾› ‹#›
2022-01-14 11:12:51 3.25MB LRP
1
神经网络实现分类matlab代码LRP_Image_Classification 逐层相关性传播 (LRP) 算法通过使用学习模型本身的拓扑将相关性分数归因于输入的重要组成部分来解释特定于给定数据点的分类器的预测。 LRP 工具箱为支持 Matlab 和 python 的人工神经网络提供了简单且可访问的 LRP 独立实现。 工具箱实现了 Caffe 深度学习框架的 LRP 功能,作为 10/2015 发布的 Caffe 源代码的扩展。 Matlab 和 python 的实现旨在作为沙箱或游乐场,让用户熟悉 LRP 算法,因此在实现时考虑了可读性和透明度。 可以使用原始文本格式、Matlab 的 .mat 文件和 python/numpy 的 .npy 格式导入和导出模型和数据。 查看运行中的 LRP 工具箱要在浏览器中试用基于 python 的 MNIST 演示或基于 Caffe 的 ImageNet 演示,请单击相应的面板: MNIST 图像 文本 基于神经网络的简单 LRP 演示,可预测手写数字并使用 MNIST 数据集进行训练。 基于使用 Caffe 实现的神经网络的更复杂的 L
2021-10-05 17:11:03 3KB 系统开源
1
用友手册资料:MFG-LRP批次需求计划.pdf
2021-10-04 18:02:06 751KB
cncnn-lrp 该存储库包含使用本文解释的原理来解释一维卷积神经网络(1D-CNN)的代码。解释技术在于计算各种n-gram特征的相关性,并确定足够和必要的n-gram。该项目带有一个多通道1D-CNN模型生成器,可用于生成测试模型。 依存关系: - Anaconda (python 3.6) - keras (tested on 2.2.4) - tensorflow (1.13.1) - numpy (1.16) - pandas (0.24) 该项目包含4个主要目录: data / sentiment_analysis该目录包含用于构建一维CNN模型和测试解释方法的培训和测试数据 models:此目录包含用于情感分析和回答问题的预训练的1D-CNN模型。 tokenizers:此目录包含用于各种数据集的已保存的keras标记器。分词器包含用于构建预训练模型的词汇表。 说明:
2021-08-26 10:42:50 14.54MB Python
1