Yoshua Bengio 等人基于学习器适应新分布的速度提出一种元学习因果结构,假设新分布由干预、智能体动作以及其它非稳态(non-stationarity)导致的稀疏分布变化引起,由此得出“正确的因果结构选择 会使学习器**更快地适应修改后的分布**”。该假设的研究将“适应修改后分布的速度”作为元学习的目标,表明“这可用于决定两个观测变量之间的因果关系”。研究结论的价值即特点和优势发现是,分布变化无需对应标准干预,学习器不具备关于干预的直接知识。因果结构可通过连续变量进行参数化,并以端到端的形式学得。研究探讨了想法的如何应用,来满足“独立机制 以及 动作和非稳态 导致的 机制内微小稀疏变化 ”的假设。
2024-03-18 08:53:54 727KB 因果结构 因果学习
1
CLR2020论文收到2594篇论文提交,有687篇被接受,接受率为26.5%。在关于图机器学习方面,Sergei Ivanov整理了关于图机器学习方面的高分论文,有49篇关于图机器学习论文。以下附上其中具有代表性的5篇论文。另外,一并附上David Mack的图机器学习介绍ppt。值得一看。
2023-06-04 10:13:25 8.6MB ICLR_49
1
训练12小时后512x512鲜花,1 gpu 训练12小时后256x256朵鲜花,1 gpu 比萨 ``轻巧''GAN 在Pytorch的ICLR 2021中提出的实现。 本文的主要贡献是发生器中的跳层激励,以及鉴别器中的自动编码自监督学习。 引用单行摘要“在经过数小时培训的情况下,可以在1024 g分辨率的数百张图像上融合在单个gpu上”。 安装 $ pip install lightweight-gan 使用 一个命令 $ lightweight_gan --data ./path/to/images --image-size 512 每隔1000次迭代,模型将保存到./models/{name} ,模型中的样本将保存到./results/{name} 。 name将是default ,默认情况下。 训练设定 深度学习从业人员的自我解释能力很强 $ lightweight_ga
1
超网络 适用于ResNet的PyTorch实施(Ha等人,ICLR 2017)。该代码主要用于CIFAR-10和CIFAR-100,但是将其用于任何其他数据集都非常容易。将其用于不同深度的ResNet架构也非常容易。 我们使用pytorch闪电来控制整个管道。 怎么跑 python train.py --dataset {cifar10/cifar100} --gpus $num_gpu -j $num_workers --distributed_backend ddp 已过期。此回购协议已将HyperNet修改为逐层实施,使用起来更加方便。需要注意的是,我们发现尽管作者设置了in_size和out_size 。实际上,您应该将in_size和out_size设置为16,否则将失败。
1
ICLR是Yann LeCun 、Yoshua Bengio 等几位行业顶级专家于2013年发起,如今已成为深度学习领域一个至关重要的学术盛事,每年一届,每届包括24篇Oral论文以及诺干Poster论文。
2022-11-03 12:01:44 206.59MB ICLR2019 Poster1
1
Rebiber:使用官方信息标准化bibtex的工具。 我们经常引用使用他们的arXiv的论文版本不提的是,他们在一些会议已经发布。 这些非正式的围兜条目可能会违反某些会议的提交规则或适用于摄像头的版本规则。 我们引入Rebiber ,这是Python中的一个简单工具,可以自动修复它们。 它基于来自或的官方会议信息(适用于NLP会议)! 您可以在查看支持的会议列表。 您可以用作简单的网络演示。 安装 pip install rebiber -U 要么 git clone https://github.com/yuchenlin/rebiber.git cd rebiber/ pip in
1
PyTorch的官方实现: 深度学习中域内不确定性估计和集合的陷阱,ICLR'20 / / // 海报视频(5分钟) 环境设定 以下内容允许使用创建并运行具有所有必需依赖项的python环境: conda env create -f condaenv.yml conda activate megabayes 日志,图表,表格,预训练砝码 在文件夹中,我们提供: 保存的日志以及所有计算结果 ipython笔记本示例,可重现绘图,表格并计算深整体等效(DEE)分数 某些模型的预训练权重可以在以下: 和等。这些权重还可以通过通过命令行界面下载: pip3 install wldhx.yadisk-direct % ImageNet curl -L $(yadisk-direct https://yadi.sk/d/rdk6ylF5mK8ptw?w=1) -o deepens_imag
2022-05-16 19:57:23 10.79MB deep-learning pytorch uncertainty ensembles
1
适用于小型和高分辨率图像集的快速稳定的GAN-pytorch 该文件的正式pytorch实施“走向更快,更稳定的GAN训练,以实现高保真的少量拍摄图像合成”,可在找到该文件。 0.数据 本文中使用的数据集可以在上找到。 在对20多个数据集进行测试后,每个数据集的图像少于100个,该GAN会收敛到其中的80%。 对于该GAN可以收敛的数据集,我仍然无法总结出明显的“良好属性”模式,请随时尝试使用您自己的数据集。 1.说明 该代码的结构如下: models.py:所有模型的结构定义。 operation.py:培训过程中的辅助功能和数据加载方法。 train.py:代码的主要条目,执行此文件以训练模型,中间结果和检查点将自动定期保存到文件夹“ train_results”中。 eval.py:将图像从受过训练的生成器生成到文件夹中,该文件夹可用于计算FID分数。 基准测试:我们用
2022-03-31 20:15:21 138KB Python
1
CMD 域不变表示学习的中心矩差异-ICLR 2017 注意:及其和均可使用 该存储库包含用于重现实验的代码,该论文在Werner Zellinger,Edwin Lughofer和Susanne Saminger-Platz的美国国际学习表示会议(ICLR2017)上发表了报告的实验。 JKU Linz的基于知识的数学系统,以及软件能力Hagenberg的数据分析系统小组的Thomas Grubinger和ThomasNatschläger。 在源代码中,CMD域正则化器用'mmatch'表示。 要求 该实现基于Theano和神经网络库Keras。 要安装Theano和Keras,请按照各自github页面上的安装说明进行操作。 您还需要:numpy,熊猫,seaborn,matplotlib,sklearn和scipy 数据集 我们在论文中报告两个不同基准数据集的结果:Amazo
1
带连续卷积的拉格朗日流体模拟 该存储库包含我们ICLR 2020论文的代码。 我们展示了如何使用连续卷积将基于粒子的流体模拟网络训练为CNN。 该代码使您可以生成数据,训练自己的模型或仅运行预训练的模型。 如果您认为此代码有用,请引用我们的论文 : @inproceedings{Ummenhofer2020Lagrangian, title = {Lagrangian Fluid Simulation with Continuous Convolutions}, author = {Benjamin Ummenhofer and Lukas Prantl and Nils Thuerey and Vladlen Koltun}, booktitle = {International Conference on Learni
2022-03-07 15:51:06 16.98MB simulation convnet cnn deeplearning
1