MMP自动推理平台软件
数学机械化
2024-10-31 20:36:16 6.9MB 数学机械化
1
内容概要: 空间推理验证码数据集+完整标注 适用场景: 适用于训练空间推理验证码的目标检测模型, 我自己也基于此数据集及标注数据训练出了识别率98%以上的安某客空间推理验证码的识别模型 更多建议: 如果你是刚接触yolo目标检测模型,建议先移步我的博客主页,博客内有手把手训练的教学。
2024-09-10 14:37:23 12.15MB 目标检测 数据集
1
PaddleOCR推理模型dll c++部署调用必要库文件 PaddleOCR c++部署调用dll原文档链接:https://blog.csdn.net/qq_45846340/article/details/140490635?spm=1001.2014.3001.5502
2024-08-12 15:25:24 76.07MB ocr
1
OpenVINO Runtime支持同步或异步模式下的推理。Async API的主要优点是,当设备忙于推理时,应用程序可以并行执行其他任务(例如,填充输入或调度其他请求),而不是等待当前推理首先完成。 当我们使用异步API时,第二个请求的传输与第一个推理的执行重叠,这防止了任何硬件空闲时间。本视频中,我们以YOLOv8模型为例,对比了OpenVINO分别使用同步推理接口以及异步推理接口的推理速度情况。 其中同步推理一帧平均推理时间为43.02毫秒,而异步接口一帧平均推理时间仅为11.37毫秒,异步接口一秒钟平均可以实现87.98FPS的推理,是同步推理的3.78倍,速度快到飞起!!
2024-07-15 10:28:28 35.26MB openvino
1
目标检测模型,典型代表有YOLO、SSD和Yolo等。这些方法采用基于回归的思想,在输入图像的多个位置直接回归出区域框坐标和物体类别,具有快速的识别速度和与faster R-CNN相当的准确率。本实例项目基与yolov8n-pose预训练模型实现人的站立、跌倒、坐的姿 态估计。
2024-06-13 17:20:50 60.19MB 姿态检测
1
[ML] Pytorch自学实战项目其4:基于学习(RNN)算法的车辆状态估计:训练模型,推理代码,数据源
2024-05-19 16:38:25 8.27MB pytorch pytorch
1
描述逻辑经典书目,对学习基于描述逻辑的本体语言、推理和相关应用有一定帮助
2024-05-07 10:28:31 2.43MB 描述逻辑 本体推理 description logic
1
yolov8 tensorrt c++推理
2024-04-17 11:06:49 131.92MB tensorrt
1
pytorch版realESRGAN模型权重和推理代码,已合并模型结构和权重参数,可以直接加载使用。4倍超分模型,推理代码包含图像推理和视频推理样例,方便快速体验图像超分效果或二次开发。ESRGAN是一种图像超分辨率算法,用于增加图像分辨率并生成更多图像细节,与传统的图像缩放算法不同的是,超分算法在放大图像的同时根据原图纹理生成更多细节,确保图像在放大后仍然有清晰的纹理细节。模型可用于修复老照片,解决胶卷相机拍摄照片因年代久远造成图像模糊、损坏等问题;缓解部分场景对焦不清晰或相机焦距不足导致照片模糊问题; 降低图像噪点,提升画质。
2024-04-13 13:27:01 59.34MB pytorch pytorch
1
yolov8### 内容概要 本文详细介绍了如何使用YOLOv5进行目标检测,包括环境配置、数据准备、模型训练、模型评估、模型优化和模型部署。YOLOv5是一个非常流行的目标检测模型,以其速度和准确性而闻名。本文旨在帮助初学者快速上手YOLOv5,并在自己的项目中实现目标检测。 ### 适用人群 本文主要面向初学者,尤其是那些对目标检测感兴趣但没有相关经验的读者。通过通俗易懂的语言和详细的步骤,初学者可以轻松理解并实践YOLOv5的使用方法。 ### 使用场景及目标 YOLOv5适用于多种场景,如安全监控、自动驾驶、图像识别等。通过学习如何使用YOLOv5进行目标检测,读者可以为自己的项目或研究添加强大的目标检测功能,提高项目的实用性和准确性。 ### 其他说明 本文假设读者已经具备一定的Python基础和计算机视觉知识。此外,由于YOLOv5是一个不断更新的项目,建议读者关注其官方仓库以获取最新信息和更新。
2024-04-12 11:12:03 206KB 目标检测 自动驾驶 python 计算机视觉
1