算法与数据结构(python版)(北大内部教材)
2024-12-31 12:57:54 8.66MB
1
了解操作系统中文件系统的结构和管理过程,掌握经典的算法:混合索引与成组链接法等方法。  模拟混合索引的原理; 假设每个盘块16字节大小,每个盘块号占2字节: 设计支持混合索引算法的索引节点的数据结构;编程模拟实现混合索引算法。 测试:输入一个文件的长度,给出模拟分配占用的磁盘块的情况;输入一个需要访问的地址,计算该地址所在的盘块号。  模拟成组链接法的原理; 设系统具有7个可用磁盘块,每组3块。 编程模拟实现成组链接法。输入请求的磁盘块数,模拟成组链接分配;输入回收的磁盘块号,模拟成组链接回收。 测试:输入请求的磁盘块数,给出分配后的链接情况。输入回收的磁盘块号,给出回收后的链接情况。
2024-12-19 15:19:11 2KB java 操作系统
1
本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下 1、加载必要的库,生成数据集 import math import random import matplotlib.pyplot as plt import numpy as np class moon_data_class(object): def __init__(self,N,d,r,w): self.N=N self.w=w self.d=d self.r=r def sgn(self,x): if(x>0): return 1;
2024-12-18 23:08:06 65KB python python算法 多层感知器
1
积分管理系统java源码 一、项目体系结构设计 1. 系统架构 业务数据库:采用MongoDB作为数据库 离线推荐部分 离线统计部分:采用 Spark Core + Spark SQL 实现对数据的统计处理 离线统计部分:采用 Spark Core + Spark MLlib 利用 ALS算法实现电影推荐 2. 项目数据流程 1. 系统初始化部分 通过 Spark SQL 将系统初始化数据加载到 MongoDB 中。 2. 离线推荐部分 离线统计:从MongoDB 中加载数据,将电影平均评分统计、电影评分个数统计、最近电影评分个数统计三个统计算法进行运行实现,并将计算结果回写到 MongoDB 中; 离线推荐:从MongoDB 中加载数据,通过 ALS 算法分别将【用 户推荐结果矩阵】、【影片相似度矩阵】回写到MongoDB 中; 3. 数据模型 Movie:电影数据表 Rating:用户评分表 User:用户表 二、基本环境搭建 项目主体用 Scala 编写,采用 IDEA 2020.1 作为开发环境进行项目编写,采用 maven 作为项目构建和管理工具。 1. 新建项目结构 新建普
2024-12-18 17:20:24 3.5MB 系统开源
1
包括YT88设置id算法工具,可返回监听锁中字符,自动返回正确密钥,结合暴力工具获取对应密码,附赠智能型监控读数据,复制
1
师姐的作业 可参考
2024-12-05 19:55:16 23.53MB
1
在液晶相控阵中,由于电压量化、边缘效应、液晶器件制造工艺等因素的影响,导致实际的波前相位面与理想的波阵面存在误差。因此,在应用中要依据实际出射相位与理想出射相位的偏差,反复地修正加载电压,对入射激光波前进行相位调制,以此来满足视场域内波束扫描的需要,这也是液晶相控阵波束控制技术研究的关键问题。为解决上述问题,提出了一种波前相位恢复算法。该算法利用三个输出面的幅度信息迭代计算出波前相位分布,相比只用两个输出面幅度信息的相位恢复算法,该算法具有较高的精确度。同时,该算法利用角谱理论处理输出面的光场传播过程,使得所得到的恢复结果更加精确。仿真实验进一步表明,这种算法在精确度、效率上同时具有优势。
2024-12-05 17:33:42 3.43MB 相位恢复 迭代算法
1
自适应声反馈抑制算法的研究.kdh ),dsp实现自适应滤波,算法很好
2024-12-03 15:08:33 742KB 自适应声反馈
1
捷联惯导( Strapdown Inertial Navigation System, SINS)是一种现代导航技术,它将惯性测量单元(IMU)直接安装在飞行器或车辆上,连续地提供位置、速度和姿态信息。严恭敏老师的MATLAB仿真程序旨在帮助学习者深入理解捷联惯导算法和组合导航原理。下面,我们将详细探讨相关知识点。 一、捷联惯导系统的基本原理 1. 惯性测量单元(IMU):IMU包含加速度计和陀螺仪,用于测量物体的加速度和角速度。加速度计检测物体线性加速度,陀螺仪测量物体的旋转速率。 2. 基于牛顿第二定律和欧拉运动方程:通过IMU的数据,可以推算出物体的位置、速度和姿态变化。 二、捷联惯导算法 1. 数据融合:由于IMU存在误差,需要采用数据融合算法,如卡尔曼滤波,来校正和融合不同传感器的数据,提高导航精度。 2. 无漂移算法:包括零速度更新(ZUPT)、重力辅助更新等,用于减小加速度计的漂移误差。 3. 姿态解算:利用陀螺仪数据进行姿态更新,常见的有四元数法、欧拉角法等。 三、MATLAB仿真的重要性 1. 理论验证:通过MATLAB仿真,可以直观验证捷联惯导算法的正确性,理解其工作过程。 2. 参数敏感性分析:可以研究不同参数对系统性能的影响,优化算法设计。 3. 故障模拟:仿真可以帮助我们预估和处理传感器故障情况,提高系统的鲁棒性。 四、组合导航原理 1. 组合导航:结合多种导航系统(如GPS、磁罗盘、星光导航等),实现优势互补,提高整体导航性能。 2. 误差模型:理解和建立各种传感器的误差模型是组合导航的关键,这包括随机噪声、系统偏差等。 3. 信息融合:使用信息融合技术(如扩展卡尔曼滤波EKF)将不同传感器的数据有效结合。 五、MATLAB仿真程序的结构 严恭敏老师的MATLAB程序可能包含了以下模块: 1. 数据采集模块:模拟IMU输出,包含加速度和角速度信号。 2. 导航解算模块:执行惯性导航计算,包括位置、速度和姿态更新。 3. 数据融合模块:实现卡尔曼滤波或其他滤波算法,对传感器数据进行平滑处理。 4. 误差分析模块:评估和展示导航误差,分析系统性能。 5. 可视化模块:将仿真结果以图形方式展示,便于理解和分析。 通过这样的MATLAB仿真,学习者可以深入探究捷联惯导系统的动态行为,掌握核心算法,并提升在实际工程应用中的问题解决能力。同时,这个仿真环境也为教学和研究提供了宝贵的实践平台。
2024-11-29 19:34:04 67KB
1
python实现svm支持向量机算法代码,数据集随机生成
2024-11-26 15:26:52 1KB python 支持向量机
1