BP神经网络的数据分类-语音特征信号分类,主要根据BP神经网络理论,在MATLAB软件中实现基于BP神经网络的语言特征信号的分类算法。包括数据选择和归一化,BP神经网络构建、BP神经网络训练以及BP神经网络分类。
2024-09-14 12:15:47 368KB BP神经网络 MATLAB仿真
1
1. Matlab实现BP神经网络的数据分类预测(完整源码和数据) 2. 多变量输入,单变量输出(类别),数据分类预测 3. 评价指标包括:准确率 和 混淆矩阵 4. 包括拟合效果图 和 混淆矩阵 5. Excel数据,要求 Matlab 2018B及以上版本
2024-06-19 17:35:12 73KB 机器学习 神经网络 Matlab 分类算法
1
Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测 Matlab实现基于MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测(Matlab完整程序和数据) 1.最大互信息系数MIC(数据特征选择算法)的分类预测,MIC特征选择分类预测,多输入单输出模型。 2.多特征输入模型,直接替换数据就可以用。 3.语言为matlab。分类效果图,混淆矩阵图。 4.分类效果图,混淆矩阵图。 5.MIC-BP-Adaboost最大互信息系数数据特征选择算法结合Adaboost-BP神经网络的数据分类预测。 运行环境matlab2018及以上。 经过特征选择后,保留9个特征的序号为: 1 3 5 7 8 9 10 11 12
2024-04-29 15:57:15 1KB matlab 神经网络
1
基于BP神经网络的数据分类matlab程序。 matlabR2020编写,可绘制出训练集及测试集结果图及各自混淆矩阵。 BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一。 基本BP算法包括信号的前向传播和误差的反向传播两个过程。即计算误差输出时按从输入到输出的方向进行,而调整权值和阈值则从输出到输入的方向进行。正向传播时,输入信号通过隐含层作用于输出节点,经过非线性变换,产生输出信号,若实际输出与期望输出不相符,则转入误差的反向传播过程。误差反传是将输出误差通过隐含层向输入层逐层反传,并将误差分摊给各层所有单元,以从各层获得的误差信号作为调整各单元权值的依据。通过调整输入节点与隐层节点的联接强度和隐层节点与输出节点的联接强度以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。
2024-04-18 09:57:21 73KB 神经网络 matlab 故障诊断 分类预测
1
BP神经网络的数据分类-语音特征信号分类源程序-*BP神经网络的数据分类-语音特征信号分类源程序*-*BP神经网络的数据分类-语音特征信号分类源程序*
2023-01-02 17:27:53 368KB BP神经网络
1
基于PSO-BP粒子群优化BP神经网络的数据分类预测(Matlab完整程序和数据) 基于PSO-BP粒子群优化BP神经网络的数据分类预测(Matlab完整程序和数据) 输入12个特征,分四类。
基于遗传算法优化BP神经网络的数据分类预测(Matlab完整程序和数据) 基于遗传算法优化BP神经网络的数据分类预测(Matlab完整程序和数据) 基于遗传算法优化BP神经网络的数据分类预测(Matlab完整程序和数据) 运行版本2018及以上
2022-11-27 18:26:35 81KB 遗传算法 BP 神经网络 数据分类预测
基于BP神经网络的数据分类预测(Matlab完整程序和数据) 基于BP神经网络的数据分类预测(Matlab完整程序和数据) 基于BP神经网络的数据分类预测(Matlab完整程序和数据)
BP神经网络的数据分类(Matlab完整程序和数据) BP神经网络的数据分类(Matlab完整程序和数据) BP神经网络的数据分类(Matlab完整程序和数据) BP神经网络的数据分类——语音特征信号分类 BP神经网络的数据分类——语音特征信号分类
MATLAB源程序1 BP神经网络的数据分类-语音特征信号分类.zip
2022-11-18 16:27:49 369KB MATLAB 神经网络 智能算法