基站建设与维护
2022-10-31 09:04:51 5.48MB 基站建设 基站 5G
5G技术与应用:5G关键技术—5G新型调制编码技术.pptx
2022-06-15 14:06:04 1.84MB 5G技术
5G空口关键技术 汇报人姓名 5G新型多址技术 5G新型多址技术-MUSA 技术原理 多用户共享接入MUSA(Multi-User Shared Access)是一种基于码域叠加的多址接入方案。MUSA通过创新设计的复数域多元码和基于串行干扰消除(SIC)的先进多用户检测,可以在相同的视频资源下支持数倍用户的接入。 主要功能和优势 MUSA系统信令开销小,接入时的延低,能简化终端的实现复杂度,降低终端的能耗。在不增加任何空口资源的前提下,使用MUSA技术可使接入用户数提升3-6倍。 5G新型多址技术-NOMA 非正交多址接入(Non-orthogonal Multiple Access: NOMA) 复杂度(Complexity) 容量(Capacity) 两个用户同时占用所有可用带宽 弱用户先解码强干扰,消除干扰的影响,再解码自己的消息。 可实现最优容量,并改善弱用户可达速率 NOMA 5G新型多址技术-NOMA 非正交多址接入(Non-orthogonal Multiple Access: NOMA) 为了进一步提高频谱效率 (5G要求提升5-15倍) ,将 NOMA 与MIMO结
2022-06-15 14:06:04 1.89MB 5G技术
5G空口关键技术 Massive MIMO Massive MIMO MIMO:在收发两端均配置多个天线单元,通过增加天线数量,获得更大的信道自由度(除时域和频域外,增加大量空域自由度)。 MIMO技术是上世纪90年代末的研究成果,2006年率先用于WiFi,随后也用于3G系统(WiMAX)。 如果阵元间距满足要求,通过交叉极化和角度配置,能保证信道矩阵统计独立,利用空间维度能实现复用和分集,支持高速数据传输。 MIMO系统能有效改善传输可靠性、频谱效率和能量效率。 Massive MIMO 在IEEE802.11n中,天线配置最多为4发4收。 IEEE 802.11ac和LTE-A中,天线配置最多为8发8收。 在实际应用中,由于移动终端体积、重量、功耗等限制,一般配置1-2根天线。 在单用户MIMO(SU-MIMO)系统中,天线数受限于终端,而在多用户MIMO (MU-MIMO) 系统中,可将多个用户终端天线组合,克服天线数受限的瓶颈;在协作多点 (CoMP)系统中,也可通过多个基站协作构建MIMO系统。 Massive MIMO Massive MIMO 技术原理 当基站侧天线数远
2022-06-15 14:06:03 1.39MB 5G技术
5G空口关键技术 高频段信号传输技术 高频段信号传输技术 技术原理 移动通信传统工作频段十分拥挤,而大于6GHz的高频段可用频谱资源丰富,能够有效缓解频谱资源紧张现状,可以支持极高速短距离通信。 主要功能和优势 高达1GHz带宽的频率资源,将有效地支持10Gbps峰值速率和1Gbps用户体验速率。 技术方案 高频段传播特性、信道测量与建模 基于高频段的传输技术方案 高频段的射频和天线关键技术 基于高频段的新载波空口设计 网络架构和组网技术 应用场景 用高频做蜂窝接入 用高频做基站与基站之间的回传 D2D的高频通信、车载通信等 高低频融合组网 Relay组网增强 干扰协调干扰管理 高频无线资源管理 高频段信号传输技术 频谱拓展技术 优势: 信号源LED灯成本低,高速传输,干扰小,能照明。 高频段信号传输技术 2014年7月,国家无线电监测中心和全球移动通信系统协会发布《450MHz-5GHz关注频段频谱资源评估报告》,给出了北京、成都和深圳等城市部分无线电频谱占用统计数字。 统计结果表明,5GHz以下所关注频段大部分的使用率远远小于10%,说明5GHz以下频段使用效率有大量的提升空间。
2022-06-15 14:06:03 1.24MB 5G技术
5G空口关键技术 双工技术 双工技术 全双工通信技术 在现有基础上,理论上信道容量提升1倍 时分双工 上下行链路同频,分时 频分双工 上下行链路分频,同时 全双工 上下行链路同频,同时 目前国外已建立试验平台,国内开展研究较少 上下行共用频段 传统频分双工系统频段分配示意图 传统时分双工系统时隙分配示意图 同频同时全双工系统时隙、频段分配示意图 双工技术 全双工蜂窝系统 ——单小区干扰分析 双工技术 全双工 自干扰抑制 空间域:天线位置、空间零陷波束、高隔离收发天线 射频域:构建与接收自干扰信号幅相相反的对消信号 数字域:残存线性与非线性自干扰进行重建消除 TX RX 射频干扰消除的典型结构 合路 反相 调幅调相 分路 接收射频 信号 发射射频 信号 接收天线 发射天线 双工技术 灵活双工技术 基本原理 随着在线视频业务的增加,以及社交网络的推广,未来移动流量呈现出多变特性:上下行业务需求随时间、地点而变化等,目前通信系统采用相对固定的频谱资源分配将无法满足不同小区变化的业务需求。 灵活双工能够根据上下行业务变化情况动态分配上下行资源,有效提高系统资源利用率。 应用场景 低功率节点的小
2022-06-15 14:06:02 782KB 5G技术
5G空口关键技术 5G空口关键技术概述 5G之花 多频段、多接入模式、小的覆盖半径给网络技术带来挑战 新型通信技术和高频段开发给半导体技术带来挑战 海量设备带来的能耗增加为绿色通信的要求带来挑战 信道在高速移动条件下的恶化和高频段信道的开发为高传输速率技术带来挑战 有限的频谱资源一直以来制约着无线通信系统性能提升 小区密集化以及移动设备的增加导致的干扰制约网络容量增长和传输速率增加 挑战 频谱资源 信道 功率 干扰 器件 无缝接入 5G发展技术需求 5G无线技术路线 5G空口关键技术演进 5G空口关键技术框架 5G空口关键技术 ① 5G新型多址技术 ② 5G新波形 ③ 5G新型调制编码技术 ④ Massive MIMO ⑤ 双工技术 ⑥ D2D ⑦ 高频段信号传输技术 5G空口关键技术
2022-06-15 13:03:37 1.94MB 5G技术
5G空口关键技术 5G新型波形 5G新型波形(OFDM) 5G新型波形(FBMC) 5G新型波形(F-OFDM) 5G新型波形(F-OFDM) 时频资源分配
2022-06-15 13:03:37 2.48MB 5G技术
5G技术与应用:5G关键技术—D2D.pptx
2022-06-15 13:03:36 1.18MB 5G技术