在当代社会,随着人工智能技术的快速发展,机器视觉在工业检测和智能监控领域发挥着越来越重要的作用。图像分割作为机器视觉中的关键技术之一,对于自动化识别和分类图像中的对象和区域至关重要。尤其是在建筑物安全检测方面,能够准确地识别出砖块、地板和墙面裂缝,对于预防事故和维护建筑物的完整性具有重大意义。 本数据集是实验室自主研发并标注的,专注于裂缝识别的图像语义分割任务,其中包含了大量高质量的裂缝图像和对应的二值mask标签。语义分割是指将图像中每个像素划分到特定的类别,从而得到图像中每个对象的精确轮廓。在这个数据集中,每张图片都对应着一个二值mask,其中白色的像素点表示裂缝的存在,而黑色像素点则表示背景或其他非裂缝区域。通过这种标注方式,可以让计算机视觉模型更好地学习和识别裂缝的形状、大小和分布特征。 数据集的规模为9495张图片,这为机器学习模型提供了丰富的训练材料,从而可以提高模型对裂缝识别的准确性和泛化能力。由于标注质量高,数据集中的裂缝图像和二值mask标签高度一致,这有助于减少模型训练过程中的误差,提升模型的性能。数据集涵盖了红砖裂缝、地板裂缝和墙面裂缝三种不同类型,因此可以被广泛应用于多种场景,如桥梁、隧道、道路、房屋和其他基础设施的检查。 该数据集不仅适用于学术研究,比如博士毕业设计(毕设)、课程设计(课设),还可以被广泛应用于工业项目以及商业用途。对于学习和研究图像处理、计算机视觉、深度学习的学者和工程师来说,这是一份宝贵的资源。它可以帮助研究人员快速构建和验证裂缝识别模型,同时也为相关领域的商业应用提供了便利。 该数据集为计算机视觉领域提供了重要的基础资源,有助于推动裂缝检测技术的发展和创新,对于提高建筑物安全检测的自动化水平具有重要的实用价值。随着技术的进步,相信这些数据将会在智能城市建设、工业安全监控以及自动化灾害预防等领域发挥越来越大的作用。
2025-11-22 10:43:56 726MB 数据集
1
岩石薄片是一种通过切割和磨制岩石样本制成的薄片,常用于地质学研究和岩石显微结构的观察。这种薄片可以放在显微镜下进行详细的微观分析,从而对岩石的矿物成分、结构、构造等进行细致研究。利用岩石薄片可以观察到岩石的微观世界,这对于理解岩石形成、演化过程以及寻找和评估矿产资源具有重要的科学价值和实际应用意义。 语义分割是一种图像处理技术,用于识别数字图像中的每个像素点并将其分配给特定的类别或标记。在岩石薄片图像分析中,语义分割可以帮助识别和区分不同的矿物成分、孔隙、裂缝等,这对于岩石学研究至关重要。通过将图像分割为具有明确语义的区域,研究者可以获得岩石微观结构的精确信息,如矿物分布模式、岩石纹理特征等。 SAM,即语义分割算法模型,是一种人工智能技术,它可以通过训练识别图像中不同对象的边界和形状,从而实现对图像的精确分割。在岩石薄片分析中,SAM模型可以被训练来识别岩石中的矿物颗粒、胶结物、孔隙空间等不同的组成部分,通过这种方式,岩石薄片的微观图像可以被有效地转化为可供分析和研究的数据。 岩石薄片数据及标签-语义分割的研究,涵盖了岩石学、矿物学、图像处理和机器学习等多个学科领域。通过对岩石薄片图像进行精确的语义分割,研究者能够更深入地了解岩石的微观结构和成分分布,为地质学研究和资源评估提供有力的工具。这种分析技术不仅提高了研究效率,也扩大了研究的深度和广度,对地质科学的发展具有重要的推动作用。
2025-11-10 10:28:45 175.67MB 语义分割
1
在深度学习领域,U-Net是一种广泛应用于图像分割任务的卷积神经网络架构。它特别适合用于道路语义分割任务,这是因为U-Net具有出色的性能,能够在图像中准确识别和区分不同的道路元素,如车道线、交通标志、行人、车辆等。道路语义分割是自动驾驶和智能交通系统中的关键技术,它的目的是将道路场景中的每个像素分配给一个特定的类别,如背景、车辆、行人、道路标识等。 基于U-Net的集成模型,通过结合多个U-Net网络的预测结果,能够在实时条件下提供更为精确的道路分割。这种集成方法能够有效减少单个模型可能出现的错误,增强系统的鲁棒性和准确性。在集成模型中,通常会采用不同初始化参数的多个U-Net模型,或者通过引入不同的特征提取和融合策略来提升最终的分割效果。 《基于Unet的集成模型,用于实时道路语义分割》这一项目的毕业设计、源码和部署教程的集成,为开发者和研究人员提供了一个完整的解决方案。该项目不仅包含了模型的设计和实现,还包括了部署教程,使得用户可以轻松地在本地环境中运行和测试模型。这对于学术研究或实际应用都具有重要的意义,尤其是对于那些需要快速搭建和评估道路语义分割系统的开发者。 项目的界面美观、操作简单,说明了开发团队在用户体验方面也投入了相当的精力。一个直观的用户界面可以减少用户的学习成本,使得非专业的用户也能轻松上手。这种对易用性的关注,使得项目不仅在学术上具有价值,也在实际应用中具有潜在的市场竞争力。 项目的实用价值体现在其能够在实时条件下进行道路场景的快速分割。实时性是自动驾驶和智能交通系统的一个关键指标,因为在这些应用中,系统需要对道路状况做出快速响应。能够实时处理道路图像并准确识别出不同元素的系统,可以为车辆提供即时的环境感知能力,这对于提高自动驾驶系统的安全性和可靠性至关重要。 由于本项目是专为学术用途设计的,因此它非常适合相关专业的毕业设计或课程设计使用。在学习和实验过程中,学生和研究人员可以通过这个项目来深入理解U-Net及其在实时道路语义分割中的应用,这对于他们的研究和未来的职业生涯具有重要的帮助。 此外,该项目的开源特性使得其他开发者可以访问源码,这不仅有利于知识的共享和技术的传播,也促进了学术界和工业界的合作与交流。开源项目通常能够吸引社区中的其他成员参与改进和扩展,这有助于加速技术的发展和应用的创新。 《基于Unet的集成模型,用于实时道路语义分割》项目为相关专业的研究者和开发者提供了一个实用、功能全面且易于上手的工具,具有重要的学术和实际应用价值。该项目的开源特性,也显示了技术社区共同进步和创新的开放精神。
2025-10-30 16:34:55 146.7MB U-Net
1
MaskFormer:每像素分类并不是语义分割所需要的全部 、、 [ ] [ ] [ ] 特征 在提高效率的同时获得更好的结果。 语义和实例级分割任务的统一视图。 支持主要语义分割数据集:ADE20K、Cityscapes、COCO-Stuff、Mapillary Vistas。 支持所有Detectron2 型号。 安装 请参阅。 入门 请参阅。 请参阅MaskFormer 入门。 模型动物园和基线 我们提供了大量基线结果和训练模型,可在MaskFormer Model Zoo 中下载。 执照 盾: MaskFormer 的大部分内容均采用知识共享署名-非商业性使用 4.0 国际许可协议进行许可。 但是,该项目的部分内容根据单独的许可条款提供:Swin-Transformer-Semantic-Segmentation 根据MIT 许可获得许可。 引用 Mask
2025-10-14 13:26:14 348KB Python
1
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、本项目仅用作交流学习参考,请切勿用于商业用途。 随着人工智能领域的飞速发展,数据集的准备已成为机器学习与深度学习研究中至关重要的一步。对于计算机视觉领域而言,准确的图像标注是训练优秀模型的基础。在图像标注领域,labelme作为一种流行的标注工具,其产出的标注文件广泛用于各类计算机视觉项目中。而Yolo(You Only Look Once)系列是当前流行的实时目标检测系统,其中YoloV8是该系列的最新进展。将labelme数据标注格式转换为YoloV8语义分割数据集的需求日益增长,特别是在图像处理、自动驾驶、安防监控等实际应用场景中。 本项目源码的开发,旨在解决数据集格式转换的痛点,使得研究者和工程师能够更加高效地准备用于训练和测试的数据。通过该项目,用户能够将labelme标注工具产生的标注文件转换为YoloV8所支持的语义分割数据集格式。这样一来,用户不仅能够节省大量数据预处理的时间,还能够更好地利用YoloV8的强大功能进行模型的开发和应用。 项目的资源代码已经过严格测试,保证了其稳定性和可靠性。无论是计算机领域的毕业生设计课题、课程作业,还是人工智能和计算机科学与技术的专业人员,都可以将此项目作为学习和研究的参考。值得注意的是,源码仅供学习交流使用,禁止用于商业用途,以保护原创者的权益。 为了使用该项目,用户需要有一定的编程基础,特别是熟悉Python语言,因为项目代码是使用Python编写的。项目文件名称为labelme2YoloV8,这表明其主要功能是从labelme的标注数据转换为适用于YoloV8的数据格式。转换过程中可能涉及数据格式的解析、图像的处理和新格式数据的生成等技术环节。 该项目的推出,不仅为机器学习社区提供了便利,还促进了计算机视觉领域研究的深入。通过这样的开源项目,更多的研究者能够参与到前沿技术的实践与创新中,共同推动人工智能技术的快速发展。
2025-09-11 22:35:37 1.95MB python
1
可以使用自己的数据集,若使用自己的数据集,需要先对label进行voc格式转换,代码位于tools文件夹下voc.py,使用流程为使用train脚本训练网络,使用prediction脚本输出分割结果。图片位于data文件夹下,可以更换为自己的数据集,但需要保持图片为灰度图片,详情见:https://blog.csdn.net/qq_52060635/article/details/134148448?spm=1001.2014.3001.5502 初始任务为医学图像分割,可以用于其他图像处理。 详情见:https://blog.csdn.net/qq_52060635/article/details/134149072?spm=1001.2014.3001.5502 包含滑窗操作,具有层级设计的Swin Transformer滑窗操作包括不重叠的local window,和重叠的cross-window。将注意力计算限制在一个窗口中,一方面能引入CNN卷积操作的局部性,另一方面能节省计算量。
1
内容概要:本文详细介绍了UResNet模型的构建与实现。UResNet是一种结合了ResNet和UNet结构的深度学习模型,主要用于图像分割任务。该模型由多个模块组成,包括上采样模块(Up)、基础块(BasicBlock)、瓶颈块(BottleNeck)、VGG块(VGGBlock)以及可选的膨胀大核注意力模块(DLKA)。DLKA模块通过大核分支、小核分支和通道注意力机制来增强特征表示能力。UResNet的主干部分采用ResNet风格的残差连接,并在编码器-解码器架构中引入跳跃连接,从而有效融合多尺度信息。最后通过卷积层输出分类结果。; 适合人群:具备一定深度学习基础,特别是对卷积神经网络有一定了解的研发人员或学生。; 使用场景及目标:①研究和开发医学影像、遥感图像等领域的图像分割应用;②探索基于ResNet和UNet架构改进的新型网络设计;③理解DLKA模块的工作原理及其在提升模型性能方面的作用。; 阅读建议:由于该模型涉及较多的PyTorch代码实现细节,建议读者首先熟悉PyTorch框架的基本用法,同时关注各组件的功能及其之间的联系,在实践中逐步掌握整个网络的设计思路。此外,对于DLKA模块的理解可以帮助读者更好地优化模型性能。
1
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
2025-06-21 16:17:38 42KB 目标检测 yolo
1
为了实现定量化应用目标,高精度的云层检测已成为遥感数据预处理的关键步骤之一。然而,传统的云检测方法存在特征复杂、算法步骤多、鲁棒性差,且无法将高级特征和低级特征相结合的缺陷,检测效果一般。针对以上问题,提出了一种基于深度残差全卷积网络的高精度云检测方法,能够实现对遥感影像云层目标像素级别的分割。首先,编码器通过残差模块的不断降采样提取图像深层特征;然后,应用双线性插值进行上采样,结合多层次编码后的图像特征完成解码;最后,将解码后的特征图与输入图像融合后再次进行卷积,实现端到端的云检测。实验结果表明,对于Landsat 8云检测数据集,所提方法的像素精度达到93.33%,比原版U-Net提高了2.29%,比传统Otsu方法提高了7.78%。该方法可以为云层目标智能化检测研究提供有益参考。 【基于深度残差全卷积网络的Landsat 8遥感影像云检测方法】是一种利用深度学习技术改进遥感影像云层检测的创新方法。传统的云检测手段往往因为特征提取复杂、步骤繁多以及鲁棒性不足而限制了其在高精度应用中的表现。而该方法则旨在克服这些缺点,通过深度残差全卷积网络(Deep Residual Fully Convolutional Network,DRFCN)实现对遥感影像云层目标的像素级精确分割。 深度残差网络(Residual Network)是深度学习领域的一个重要突破,它通过引入残差块来解决深度神经网络中的梯度消失和爆炸问题,使得网络能更有效地学习到高层特征。在云检测中,DRFCN的编码器部分利用残差模块进行连续的下采样,这有助于提取图像的深层语义特征,如纹理、形状和颜色等与云层相关的重要信息。 全卷积网络(Fully Convolutional Network, FCN)在此过程中起到了关键作用,它允许网络直接进行像素级别的预测。在DRFCN中,经过编码器提取特征后,采用双线性插值进行上采样,目的是恢复图像的空间分辨率,同时结合不同层次编码后的图像特征进行解码。这种解码过程有助于保持从低层到高层的细节信息,确保了云检测的准确性。 解码后的特征图与原始输入图像融合,再次进行卷积操作,实现了端到端的云检测。这种方法的优势在于可以综合高级特征和低级特征,提高检测的鲁棒性和精度。实验结果显示,对于Landsat 8云检测数据集,该方法的像素精度达到了93.33%,相比原版的U-Net(Unet)提高了2.29%,相对于传统的Otsu方法提高了7.78%。 此方法不仅提升了云检测的精度,也为遥感影像分析的智能化和自动化提供了有效工具,特别是在气候监测、环境变化研究、灾害预警等领域具有广泛的应用潜力。未来的研究可以进一步优化网络结构,探索更高效的方法来融合特征,以及针对不同类型的遥感影像进行适应性调整,以提升在更大范围和更复杂条件下的云检测性能。
2025-06-04 12:25:18 2.36MB 深度学习 语义分割
1