内容概要:本文档详细介绍了在统信操作系统服务器版上搭建Hadoop 3.3.6大数据生态集群的全过程,涵盖虚拟环境准备、基础服务配置与核心组件安装。主要包括:通过NTP实现三台虚拟机(node1-node3)的时间同步;配置静态IP、主机名及SSH免密登录;关闭防火墙并安装JDK 1.8作为运行环境。随后部署Hadoop集群,配置HDFS、YARN、MapReduce的核心参数,并规划NameNode、DataNode、ResourceManager等角色分布。进一步安装Zookeeper 3.5.7实现协同服务,配置myid和集群通信。集成HBase 3.0.0构建分布式列式数据库,依赖HDFS和Zookeeper,并解决HMaster启动问题。安装MySQL 5.7作为元数据存储,用于Hive和Sqoop。部署Hive 3.1.3,配置其连接MySQL元数据库,并演示内部/外部表、分区表及HQL查询操作。利用Sqoop 1.4.7实现MySQL与HDFS/Hive之间的双向数据迁移,解决驱动和权限问题。最后简要介绍Spark 3.3.1的分布式安装与启动。文档还涉及MongoDB 8.0.3的安装与基本操作。; 适合人群:具备Linux操作系统、网络基础和Java开发经验,从事大数据平台搭建、运维或开发的技术人员,尤其是初学者和中级工程师。; 使用场景及目标:①学习和实践Hadoop生态系统各组件(HDFS, YARN, MapReduce, HBase, Hive, Sqoop, Spark, Zookeeper)的单机及集群部署流程;②掌握大数据平台环境配置的关键步骤,如时间同步、SSH免密、环境变量设置;③实现关系型数据库与Hadoop之间的数据导入导出,构建端到端的数据处理管道。; 阅读建议:此文档为实操性极强的安装指南,建议读者严格按照步骤在虚拟环境中进行实践。重点关注配置文件的修改(如core-site.xml, hdfs-site.xml, hive-site.xml等)和环境变量的设置。对于遇到的报错(如“找不到主类”、“权限问题”、“驱动缺失”),应仔细对照文档提供的解决方案进行排查。建议在操作前充分理解各组件的作用及其相互关系。
2026-01-21 15:09:15 12.35MB Hadoop MapReduce Hive Zookeeper
1
《PySpark数据分析和模型算法实战》一书着重介绍了如何运用PySpark进行数据分析和构建预测模型,特别是针对客户流失预测这一重要业务场景。在高度竞争的市场中,预测客户流失至关重要,因为保留现有客户的成本通常远低于获取新客户的成本。本项目以虚构的音乐流媒体公司“Sparkify”为背景,其业务模式包括免费广告支持和付费无广告订阅,旨在通过数据分析预测哪些用户最有可能取消订阅。 项目分为五个主要任务: 1. 探索性数据分析(EDA):这一步涉及对数据集的初步探索,包括检查缺失值、计算描述性统计、数据可视化以及创建流失率指标,以便了解数据的基本特征和潜在模式。 2. 特征工程:在这个阶段,会创建新的特征,比如用户级别的聚合特征,以增强模型的解释性和预测能力。 3. 数据转换:利用PySpark的`Pipeline`功能,扩展并矢量化特征,为后续的机器学习模型做准备。 4. 数据建模、评估与优化:选择合适的分类模型,如随机森林分类器(RandomForestClassifier)、梯度提升树分类器(GBTClassifier)或逻辑回归(LogisticRegression),并应用交叉验证(CrossValidator)进行参数调优,同时使用MulticlassClassificationEvaluator评估模型性能,以F1分数为主要指标,考虑不平衡类别问题。 5. 总结:对整个分析过程进行总结,包括模型的性能、局限性和潜在的改进方向。 在实际操作中,我们需要先安装必要的Python库,如numpy、sklearn、pandas、seaborn和matplotlib。接着,通过PySpark的`SparkSession`建立Spark执行环境。项目使用的数据集是`sparkify_event_data.json`的一个子集——`mini_sparkify_event_data.json`,包含了用户操作的日志记录,时间戳信息用于追踪用户行为。为了评估模型,选择了F1分数,它能平衡精确性和召回率,适应于类别不平衡的情况。 在数据预处理阶段,使用了PySpark提供的多种功能,如`functions`模块中的函数(例如`max`)、`Window`对象进行窗口操作,以及`ml.feature`模块中的特征处理工具,如`StandardScaler`进行特征缩放,`VectorAssembler`组合特征,`StringIndexer`和`OneHotEncoder`处理分类变量,`Normalizer`进行特征标准化。此外,还使用了`ml.classification`模块中的分类模型,以及`ml.tuning`模块进行模型调参。 在模型训练和评估环节,除了使用PySpark内置的评估器`MulticlassClassificationEvaluator`外,还结合了Scikit-Learn的`roc_curve`和`auc`函数来绘制ROC曲线,进一步分析模型的性能。 这本书提供了关于如何使用PySpark进行大规模数据分析和构建机器学习模型的实战指导,对于理解PySpark在大数据分析领域的应用具有很高的参考价值。读者将学习到如何处理数据、特征工程、模型训练和评估等核心步骤,以及如何在Spark环境中有效地执行这些操作。
2026-01-06 13:31:19 2.18MB spark 数据分析
1
项目源码:基于Hadoop+Spark招聘推荐可视化系统 大数据项目 计算机毕业设计 基于Hadoop+Spark的招聘推荐可视化系统是一种利用Hadoop和Spark等大数据处理技术,实现招聘推荐和可视化展示的应用系统。以下是该系统的主要介绍: 数据采集:系统通过各种渠道(如招聘网站、社交媒体等)获取大量的招聘相关数据,包括职位信息、公司信息、求职者信息等。这些数据以结构化或半结构化形式存在。 数据存储与处理:系统利用Hadoop分布式文件系统(HDFS)存储采集到的招聘数据,并使用Hadoop生态圈中的工具(如Hive、HBase等)进行数据处理和管理。Spark作为数据处理引擎,提供高性能的批处理和实时计算能力,对招聘数据进行清洗、转换和特征提取等操作。 招聘推荐:系统利用Spark的机器学习库(如MLlib)构建候选模型,通过对求职者的个人资料、工作经历、技能等特征进行分析,匹配合适的职位和公司。系统可以根据用户的偏好和需求,向其推荐最相关的招聘信息。 可视化展示:系统利用可视化工具(如matplotlib、Plotly等)将招聘数据以各种图表、图形等形式可视化展示。
2025-12-29 02:30:06 191.07MB hadoop spark 毕业设计
1
介绍 基于Spark的高校数据分析系统 。同时实现了Spark-core(被注释了);Spark-ML,Spark-streaming。 spark-streaming虽然过时很久了,但是对于我学习来说还是够了。 streaming存在很多的弊端,但是主要思想还是处理流式RDD。 新手gitter,不知道怎么处理项目文件的。这是文件夹的下面的说明, spark_student:IDEA项目文件。 makeDataByPython : 模拟服务器制造log日志的python代码。 other : 代码设计过程中的思路和想法。 PPT:项目展示的PPT。 reference_code :参考代码。 reference_data:参考数据。 running_sh:软件运行脚本。 spark_JAR:web_spark.jar。 README.assets:是README.md 的引用文件。 软件架构 运行环境:centos 6.x、java、kafka、zookeeper、Flume、Hbase、HDFS、YARN、Spark、MySQl。
2025-12-29 02:22:00 173.02MB spark
1
内容概要:本文档是关于熟悉 Spark 初级编程实践的实验报告,主要介绍了如何使用 Spark 访问本地文件和 HDFS 文件,编写、编译和运行 Spark 应用程序。实验内容包括:通过 Spark-shell 读取本地和 HDFS 文件并统计行数;编写独立应用程序读取 HDFS 文件统计行数;编写独立应用程序实现数据去重;编写独立应用程序求平均成绩。报告还列举了实验中遇到的问题及其解决方法,并分享了使用 Spark 进行数据处理的心得体会,强调了 Spark 在大规模数据处理中的高效性、可扩展性和易用性。 适合人群:具有基本编程基础,对大数据技术有兴趣的学习者,特别是刚开始接触 Spark 的初学者。 使用场景及目标:①掌握 Spark 访问本地文件和 HDFS 文件的方法;②学会编写、编译和运行 Spark 应用程序;③理解 Spark 数据处理的基本流程和常用操作;④解决在 Spark 实验中遇到的常见问题;⑤提升对 Spark 处理大规模数据的理解和应用能力。 其他说明:本实验报告不仅提供了详细的实验步骤和代码示例,还针对实验过程中可能出现的问题给出了具体的解决方案。同时,通过编写多个独立应用程序,帮助读者更好地理解和掌握 Spark 的核心概念和实际应用技巧。此外,报告还分享了使用 Spark 进行数据处理的一些经验和心得,为读者进一步学习和使用 Spark 提供了宝贵的参考。
2025-12-14 08:38:56 2.69MB Spark Scala HDFS WordCount
1
数据分析的目的是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,从而找出所研究对象的内在规律。在实际应用中,数据分析可帮助人们做出判断,以便采取适当行动。数据分析是有组织有目的地收集数据、分析数据,使之成为信息的过程。这一过程是质量管理体系的支持过程。在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。例如设计人员在开始一个新的设计以前,要通过广泛的设计调查,分析所得数据以判定设计方向,因此数据分析在工业设计中具有极其重要的地位。 离线数据分析 离线数据分析用于较复杂和耗时的数据分析和处理,一般通常构建在云计算平台之上,如开源的HDFS文件系统和MapReduce运算框架。Hadoop机群包含数百台乃至数千台服务器,存储了数PB乃至数十PB的数据,每天运行着成千上万的离线数据分析作业,每个作业处理几百MB到几百TB甚至更多的数据,运行时间为几分钟、几小时、几天甚至更长。 [1] 在线数据分析 在线数据分析也称为联机分析处理,用来处理用户的在线请求,它对响应时间的要求比较高(通常不超过若干秒)。与离线数据分析相比,在线数据分
2025-12-02 18:23:49 3.58MB 数据分析 spark
1
hbase-spark-1.0.1_spark-3.0.1_2.jar
2025-11-27 16:23:40 496KB
1
基于Hadoop+Spark招聘推荐可视化系统 大数据项目 毕业设计(源码下载) 基于Hadoop+Spark的招聘推荐可视化系统是一种利用Hadoop和Spark等大数据处理技术,实现招聘推荐和可视化展示的应用系统。以下是该系统的主要介绍: 数据采集:系统通过各种渠道(如招聘网站、社交媒体等)获取大量的招聘相关数据,包括职位信息、公司信息、求职者信息等。这些数据以结构化或半结构化形式存在。 数据存储与处理:系统利用Hadoop分布式文件系统(HDFS)存储采集到的招聘数据,并使用Hadoop生态圈中的工具(如Hive、HBase等)进行数据处理和管理。Spark作为数据处理引擎,提供高性能的批处理和实时计算能力,对招聘数据进行清洗、转换和特征提取等操作。 招聘推荐:系统利用Spark的机器学习库(如MLlib)构建候选模型,通过对求职者的个人资料、工作经历、技能等特征进行分析,匹配合适的职位和公司。系统可以根据用户的偏好和需求,向其推荐最相关的招聘信息。 可视化展示:系统利用可视化工具(如matplotlib、Plotly等)将招聘数据以各种图表、图形等形式可视化展示。例如,
2025-11-23 18:25:05 191.07MB hadoop spark 毕业设计
1
基于大数据技术构建的地铁客流智能分析系统——高效管理与决策支持平台,项目21:基于大数据技术的地铁客流量分析系统 简介: 本项目旨在利用Hadoop和Spark大数据技术,对海量地铁客流量数据进行高效管理和深入分析。 通过构建数据仓库,实现用户登录注册功能,并提供地铁站点数量、站点人数、闸机总客流量等实时查询服务。 项目将进行站点乘客数量漏斗分析,以识别客流流失环节;同时,分析不同站点及线路的流量峰值和占比,为地铁运营提供决策支持。 最终,通过可视化技术展示统计分析结果,为管理者提供直观、易懂的数据展现形式,助力提升地铁运营效率和服务质量。 hadoop+spark+mysql+mybatis+springboot+vue+echarts+hmtl+css ,基于所给信息,提取的核心关键词为: 大数据技术; 地铁客流量分析; Hadoop; Spark; 数据仓库; 实时查询服务; 站点乘客数量漏斗分析; 流量峰值分析; 决策支持; 可视化技术。 关键词以分号分隔为:大数据技术; 地铁客流量分析; Hadoop; Spark; 数据仓库; 实时查询服务; 站点乘客数量漏斗分析;
2025-11-18 23:02:15 495KB
1
标题SpringBoot与Spark结合的西南天气数据分析与应用研究AI更换标题第1章引言阐述SpringBoot与Spark结合在西南天气数据分析中的研究背景、意义及国内外现状。1.1研究背景与意义介绍西南地区天气数据的特殊性及分析的重要性。1.2国内外研究现状概述国内外在天气数据分析与应用方面的研究进展。1.3研究方法与创新点介绍SpringBoot与Spark结合的方法,并说明研究的创新之处。第2章相关理论总结和评述SpringBoot、Spark及天气数据分析的相关理论。2.1SpringBoot框架理论介绍SpringBoot框架的特点、优势及在数据分析中的应用。2.2Spark计算框架理论阐述Spark的分布式计算原理、优势及在数据处理中的应用。2.3天气数据分析理论介绍天气数据分析的基本方法、常用模型及评价指标。第3章系统设计与实现详细描述基于SpringBoot与Spark的西南天气数据分析系统的设计方案和实现过程。3.1系统架构设计介绍系统的整体架构、模块划分及模块间交互方式。3.2数据采集与预处理阐述天气数据的采集方法、数据清洗及预处理流程。3.3数据分析模型构建介绍基于Spark的天气数据分析模型的构建过程及参数设置。3.4系统实现与部署系统的开发环境、实现细节及部署方式。第4章实验与分析对基于SpringBoot与Spark的西南天气数据分析系统进行实验验证和性能分析。4.1实验环境与数据集介绍实验所采用的环境、数据集及评估指标。4.2实验方法与步骤给出实验的具体方法和步骤,包括数据加载、模型训练和测试等。4.3实验结果与分析从准确性、效率等指标对实验结果进行详细分析,并对比其他方法。第5章应用与推广介绍系统在西南天气数据分析中的应用场景及推广价值。5.1应用场景分析分析系统在天气预报、灾害预警等方面的应用场景。5.2推广价值评估评估系统在其他地区或
2025-11-18 22:46:24 10.08MB springboot spark vue mysql
1