Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据样本,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类。
2024-07-28 17:19:42 4KB 机器学习 数据集
1
一、实验目的 1、复习主成分分析的原理和算法 2、使用sklearn库函数实现对鸢尾花数据集的主成分分析,观察主成分分析的作用 3、(选做)解读基于主成分分析和支持向量机的人脸识别程序 二、实验步骤 1、导入鸢尾花数据集,查看数据分布情况: 选取三个特征查看数据分布情况 选取两个特征查看数据分布情况 2、使用主成分分析函数对鸢尾花数据集降维 3、对降维后的数据集和原始数据集分别进行线性判别分析,比较分析的准确率 4、(选做)使用数值计算方法实现步骤2,深入了解主成分分析的实现过程 三、实验结果与讨论 1、简单清楚的叙述主成分分析的过程 2、绘制人脸识别程序的流程框图
2024-04-17 17:37:14 1.45MB python 数据集 主成分分析 人脸识别
1
@参考Python 机器学习基础教程 鸢尾花分类 一个简单的机器学习应用,构建第一个模型。 对鸢尾花的分类,根据测量数据进行,该测量数据则为特征。测量数据:花瓣的长度和宽度、花萼的长度和宽度,所有测量结果的单位为cm 我们的目标是构建一个机器学习模型 因为有已知品种的鸢尾花的测试数据,所以这是一个监督学习问题。我们要在多个选项中预测其中一个(品种)。这是一个分类(classsification)问题。可能的输出(鸢尾花的不同品种)叫做类别(class)。数据集中共有三个类别(setosa、versicolor、virginica)。对于一个数据点来说,它的品种叫做标签(label)。 1、初识
2023-04-21 20:06:58 865KB python python机器学习 python算法
1
这段时间,自己学习了一些有关机器学习的算法,现在拿鸢尾花分类来对这四种进行巩固与回顾。 这些算法都是直接使用的skearn库的算法,并未自己编写。 鸢尾花的降维 import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris data = load_iris() y = data.target X = data.data pca = PCA(n_components=2) reduced_X = pca.fit_transform(X) re
2023-04-10 21:10:17 108KB 分类 鸢尾花
1
该数据集为人工智能大数据等常用数据集,也是MATLAB常用的分类实验数据集,由著名的科学家Fisher收集整理,该数据集包含150个数据集,分为3类,每类50个数据,每个数据包含四个属性。 四个属性:         Sepal.Length(花萼长度),单位是cm;         Sepal.Width(花萼宽度),单位是cm;         Petal.Length(花瓣长度),单位是cm;         Petal.Width(花瓣宽度),单位是cm; 三个种类:         Iris Setosa(山鸢尾);         Iris Versicolour(杂色鸢尾);         Iris Virginica(维吉尼亚鸢尾)。 ​,适用于大部分场景,也是新手模拟练习的最佳选择之一,数据可自行调整,增删改查等等,MATLAB可用函数load(’iris.txt’)直接调用,其他软件大同小异
2023-04-05 16:07:05 844B 数据集
1
iris_classification_BPNeuralNetwork 本文用Python实现了BP神经网络分类算法,根据鸢尾花的4个特征,实现3种鸢尾花的分类。
2023-03-29 21:10:42 23KB 神经网络 人工智能 python 机器学习
1
K-近邻算法 文章目录K-近邻算法学习目标1.10 交叉验证,网格搜索1 什么是交叉验证(cross validation)1.1 分析1.2 为什么需要交叉验证**问题:那么这个只是对于参数得出更好的结果,那么怎么选择或者调优参数呢?**2 什么是网格搜索(Grid Search)3 交叉验证,网格搜索(模型选择与调优)API:4 鸢尾花案例增加K值调优 学习目标 掌握K-近邻算法实现过程 知道K-近邻算法的距离公式 知道K-近邻算法的超参数K值以及取值问题 知道kd树实现搜索的过程 应用KNeighborsClassifier实现分类 知道K-近邻算法的优缺点 知道交叉验证实现过程 知道超
2023-03-28 16:38:25 113KB 交叉 交叉验证 学习
1
鸢尾花数据,通过该数据可以进行聚类分析: k-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。
2023-03-15 19:06:44 4KB 聚类
1
'萼片长','萼片宽','花瓣长','花瓣宽'
2023-03-03 19:48:29 184KB 鸢尾花
1
python鸢尾花数据基于sklearn使用不同的机器学习分类器,包括KNN、逻辑回归、决策树、梯度提升、AdaBoost、随机森林、高斯朴素贝叶斯、多项式朴素贝叶斯、线性判别分析、二次判别分析、支持向量机
2023-02-28 13:56:03 204KB 机器学习 分类 python sklearn
1