标题中的“预瞄跟踪控制算法”是汽车动态控制系统中的一个重要概念,它涉及到车辆在行驶过程中的路径跟踪和稳定性。预瞄跟踪控制(Predictive Path Tracking Control)是一种先进的控制策略,其核心思想是根据车辆当前状态和未来可能的行驶路径,预测未来的车辆行为,并据此调整车辆的驾驶参数,如转向角或油门深度,以实现精确的路径跟踪。 描述中提到的“单点或多点驾驶员模型”是模拟驾驶员行为的不同方法。单点模型通常简化驾驶员为一个点,考虑其对车辆输入的影响,而多点模型则更复杂,可能包括驾驶员的身体各部位的动作以及视线等多方面的因素,以更真实地模拟驾驶行为。这里的“横制”可能指的是车辆横向动态控制,即车辆在侧向的稳定性和操控性。 “纯跟踪算法”是另一种路径跟踪控制策略,其目标是使车辆尽可能接近预定的行驶轨迹,通常通过优化控制器参数来实现最小误差跟踪。这种算法在自动驾驶和高级驾驶辅助系统(ADAS)中有着广泛应用。 “carsim和MATLAB Simulink联合仿真”意味着使用了两种强大的工具进行系统仿真。CarSim是一款专业的车辆动力学仿真软件,常用于车辆动态性能分析;MATLAB Simulink则是一个图形化建模环境,适合构建和仿真复杂的系统模型。将两者结合,可以创建出详尽的车辆控制系统模型,并进行实时仿真,以便测试和优化控制算法。 标签中的“matlab 算法 范文/模板/素材”表明提供的内容可能包含MATLAB编程的示例、算法实现模板或者相关研究素材,可以帮助学习者理解和应用预瞄跟踪控制算法。 压缩包内的文件可能是关于这个控制算法的详细解释、仿真步骤或者代码示例。"工程项目线上支持预瞄跟踪.html"可能是项目介绍或教程文档,"工程项目线上支持预瞄跟踪控制算.txt"可能是算法描述或代码片段,而"sorce"可能是一个源代码文件夹,包含了实际的MATLAB代码。 这个资料包提供了一个全面的学习资源,涵盖了预瞄跟踪控制算法的设计、驾驶员模型的建立、车辆横向控制的仿真,以及如何使用MATLAB和CarSim进行联合仿真。对于研究汽车控制系统的学者、工程师或是学生来说,这是一个非常有价值的学习材料。通过深入学习和实践,可以掌握高级的车辆动态控制技术,并提升在自动驾驶和汽车电子领域的能力。
2024-11-13 15:54:43 49KB matlab
1
Python是一种高级、通用、解释型的编程语言,由Guido van Rossum于1989年发起,1991年正式发布。Python以简洁而清晰的语法著称,强调代码的可读性和易于维护。以下是Python的一些主要特点和优势: 易学易用: Python的语法设计简单直观,更接近自然语言,使初学者更容易上手。这种易学易用的特性促使了Python在教育领域和初学者中的广泛应用。 高级语言: Python是一种高级编程语言,提供了自动内存管理(垃圾回收)等功能,减轻了程序员的负担,同时具有动态类型和面向对象的特性。 跨平台性: Python具有很好的跨平台性,可以在多个操作系统上运行,包括Windows、Linux、macOS等,使得开发的代码可以轻松迁移。 丰富的标准库: Python内置了大量的模块和库,涵盖了文件操作、网络编程、数据库访问等各个方面。这些标准库使得开发者能够快速构建功能丰富的应用程序。 开源: Python是开源的,任何人都可以免费使用并查看源代码。这种开放性促进了Python社区的发展,使得有大量的第三方库和框架可供使用。 强大的社区支持: Python拥有庞大而活跃的开发社区,这使得开发者可以轻松获取帮助、分享经验,并参与到Python的发展中。 适用于多个领域: Python在各种领域都有广泛的应用,包括Web开发、数据科学、人工智能、自动化测试、网络编程等。特别是在数据科学和人工智能领域,Python成为了主流的编程语言之一。 支持面向对象编程: Python支持面向对象编程,允许开发者使用类和对象的概念,提高了代码的重用性和可维护性。
2024-04-10 00:58:34 78.33MB python 毕业设计 课程设计
1
开发环境: Pycharm + Python3.6 + 卷积神经网络算法 基于人脸表面特征的疲劳检测,主要分为三个部分,打哈欠、眨眼、点头。本实验从人脸朝向、位置、瞳孔朝向、眼睛开合度、眨眼频率、瞳孔收缩率等数据入手,并通过这些数据,实时地计算出驾驶员的注意力集中程度,分析驾驶员是否疲劳驾驶和及时作出安全提示。 视觉疲劳检测原理:因为人在疲倦时大概会产生两种状态: 眨眼:正常人的眼睛每分钟大约要眨动10-15次,每次眨眼大概0.2-0.4秒,如果疲倦时眨眼次数会增多,速度也会变慢。打哈欠:此时嘴会长大而且会保持一定的状态。因此检测人是否疲劳可以从眼睛的开合度,眨眼频率,以及嘴巴张合程度来判断一个人是否疲劳。 检测工具 dlib :一个很经典的用于图像处理的开源库,shape_predictor_68_face_landmarks.dat是一个用于人脸68个关键点检测的dat模型库,使用这个模型库可以很方便地进行人脸检测,并进行简单的应用。 眨眼计算原理: (1) 计算眼睛的宽高比 基本原理:计算 眼睛长宽比 Eye Aspect Ratio,EAR.当人眼睁开时,EAR
2024-03-05 21:16:22 78.33MB python 卷积神经网络 疲劳驾驶检测
1
电动汽车模型的各模块的Simulink模型,包括驾驶员模块,整车控制器模块,电机模块,变速器模块,主减速器模块,车轮模块,车速模块以及BMS模块。 附有说明文档,文档详细的描述了模型的建模过程及功能 电动汽车模型的Simulink模型包含多个模块,其中包括驾驶员模块,整车控制器模块,电机模块,变速器模块,主减速器模块,车轮模块,车速模块以及BMS模块。这些模块通过Simulink软件进行建模,并用于仿真和控制电动汽车的行为。 在电动汽车模型中,驾驶员模块负责接收驾驶员的指令和输入,并将其转化为相应的控制信号。整车控制器模块则负责协调各个模块之间的通信和控制策略。 电机模块是电动汽车的关键组成部分,它控制电动机的运行,包括速度和扭矩控制等。变速器模块用于改变电力传输的效率和转速比,以适应不同的驾驶情况。 主减速器模块负责将电机的高速旋转转换为合适的车轮转速,并提供适当的力矩输出。车轮模块用于模拟车辆与地面的接触,以确定牵引力和滚动阻力等参数。 车速模块监测车辆的实时速度,并与其他模块进行通信以实现精确的速度控制。最后,BMS模块(电池管理系统)负责监测和管理电动汽车的电池状态,
2024-03-05 20:59:23 166KB 网络 网络
1
Toast_dem是Android studio api level33 编译打包的 后端实现部分就是灵魂了加载自己的模型即可
1
开发技术环境: Pycharm + Python3.6 + PyQt5 + OpenCV + 卷积神经网络模型 本文采用卷积神经算法对驾驶室内的驾驶员进行实时的面部图像抓拍,通过图像处理的技术分析人眼的闭合程度,从而判断驾驶员的疲劳程度。本文介绍了对目标图像进行人脸检测,然后在分割出的人脸图像中,对人脸图像进行水平投影,并根据水平投影得到的人眼上下眼睑,定位出人眼的位置,而且根据人眼的上下眼睑可以通过事先给出的一定判别标准,判断眼部是否处于疲劳状态,从而达到疲劳检测的目的。当检测出驾驶员处于疲劳时,系统会自动报警,使驾驶员恢复到正常状态,从而尽量规避了行车的安全隐患,并且系统做出预留功能,可以将驾驶员的疲劳状态图片发送给指定的服务器以备查询。因此组成本系统中系统模块如下: (1)视频采集模块 (2)图像预处理模块 (3)人脸定位模块 (4)人眼定位模块 (5)疲劳程度判别模块 (6)报警模块
2023-10-19 10:10:40 2.8MB python
1
项目概况 认证流程 试验要点
2023-09-22 16:02:53 2.85MB 自动驾驶
1
设计主要是基于MATLAB的疲劳驾驶视觉性检测,其研究方案总体处理框架一般包括以下五个阶段: (1) 视频输入阶段:通过摄像头或者其他视频设备获取司机的面部图像数据。 (2) 预处理阶段:对采集到的图像数据进行预处理,去除噪声、调整亮度、对比度等,以提高后续处理的效果。 (3)特征提取阶段:采用图像特征提取算法,从预处理后的图像中提取与疲劳状态相关的特征信息。一般用来检测眼睛状态。可以使用灰度积分投影技术进行眼睛定位。 (4)特征分类阶段:将特征信息与已知模型进行比较和分析,判断司机是否处于疲劳状态。可以使用神经网络、perclos技术进行分类判别。 (5)结果输出阶段:根据特征分类结果,输出报警信号或其他措施,提醒司机注意安全行车。
2023-04-20 11:38:53 5.53MB matlab 毕业设计 软件/插件
1
一个基于Python项目开发的源码,是一个人脸识别系统,主要是用来识别驾驶员的,同时还可以识别他当下的疲劳状态是否需要休息。学生可以用来做毕业设计。同样这个源码可以用在交警摄像头上,可以看看马路上是否有疲劳驾驶的司机,也可以用于高速收费站,毕竟高速上疲劳驾驶是一件非常危险的事情。源码压缩包直接上传了,下载即可运行。
2023-03-30 16:27:48 68.33MB python 人脸识别 检测系统 毕业设计
1
为了更准确地描述交通流,考虑驾驶员反应延迟时间和前车信息的非均衡使用,建立一种多预期延迟跟驰模型。线性稳定性分析表明,驾驶员反应延迟时间的增加会降低交通流的稳定性,多个前车信息的使用可以提高交通流的稳定性。数值仿真的结果表明,减少司机的反映延迟时间和适当地增加前车信息都能提高交通流的稳定性。为尽可能少地引入输入变量,不均衡地利用前车的车间距和速度差信息是必要的;理论和数值模拟的结果均表明驾驶员反应延迟在交通拥堵的形成过程中起着重要作用。
1