基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。 这段程序主要是一个基于CNN-LSTM-Attention神经网络的预测模型。下面我将逐步解释程序的功能和运行过程。 1. 导入所需的库: - matplotlib.pyplot:用于绘图 - pandas.DataFrame和pandas.concat:用于数据处理 - sklearn.preprocessing.MinMaxScaler:用于数据归一化 - sklearn.metrics.mean_squared_error和sklearn.metrics.r2_score:用于评估模型性能 - keras:用于构建神经网络模型 - numpy:用于数值计算 - math.sqrt:用于计算平方根 - attention:自定义的注意力机制模块 2. 定义一个函数mae_value(y_true, y_pred)用于计
2024-10-31 10:13:17 288KB 网络 网络 lstm
1
提高风出力预测精度的储能系统模糊控制策略,阿丽努尔.阿木提,晁勤,风气象信息精细化程度不够造成风电场风出力预测精度低,导致电网调度困难问题,从而易造成电力系统失稳。本文提出在风电场中配置
2024-03-22 15:19:15 438KB 首发论文
1
基于卷积-长短期记忆网络加注意力机制(CNN-LSTM-Attention)的时间序列预测程序,预测精度很高。 可用于做风电功率预测,电力负荷预测等等 标记注释清楚,可直接换数据运行。 代码实现训练与测试精度分析。
2023-12-11 12:30:03 285KB 网络 网络 lstm
1
针对传统灰色模型在多原始数据、长时间尺度的负荷预测情景下预测精度差的问题,文中分析了灰色模型(Gray Model,GM)的基本原理,并提出相应的改进措施,其中包括原始数据的加权处理、选取合适的初始条件及自适应优化模型参数。并将改进灰色模型(Improved Grey Model,IGM)应用于电力负荷预测。通过算例分析结果表明,无论在短期负荷预测还是在中长期负荷预测的情景下,所提出基于改进灰色模型的电力负荷预测方法相比于传统灰色模型,均具有更高的预测准确性,能够为电力系统的安全、稳定运行以及合理的规划提供重要支撑。
1
有限套利, 投资者情绪与分析师盈利预测精度.pdf
2022-04-17 13:00:47 717KB 技术文档
为提高短期负荷预测精度,针对传统的单一负荷预测模型精度低以及常规智能算法在解决高维、多模复杂问题时容易陷入局部最优的问题进行了研究,提出了一种结合混沌纵横交叉的粒子群算法(CC-PSO)优化极限学习机(ELM)的短期负荷预测模型。ELM的泛化能力与其输入权值和隐含层偏置密切相关,采用结合混沌纵横交叉的粒子群算法优化ELM的输入权值与隐含层偏置,提高了ELM的泛化能力和预测精度。选择广东某地区实际电网负荷数据进行分析,研究结果表明,相对于BP神经网络和支持向量机,ELM具有更高的泛化能力和预测精度;CC-PSO相对于粒子群和遗传算法具有更高的全局搜索能力,CC-PSO-ELM模型具有较高的负荷预测精度
1
在经济体系不稳定的发展中国家,历史数据的永久性波动一直是一个令人担忧的问题。 识别变量的依赖性和独立性是模糊的,建立可靠的预测模型比其他国家更复杂。 尽管非线性多元经济时间序列的线性化来预测可能会给出结果,但应忽略显示经济系统中不规则性的数据的性质。 人工神经网络(ANN)的新方法有助于建立一个保持数据属性的预测模型。 在本文中,我们使用德黑兰证券交易所 (TSE) 10 年的日内数据来预测未来 2 个月。 与自回归积分移动平均 (ARIMA) 模型相比,来自 ANN 的长短期记忆 (LSTM) 选择和输出。 结果表明,虽然在长期预测中,两种模型的预测精度都有所降低,但 LSTM 在精度误差方面明显优于 ARIMA。
2021-12-19 11:26:32 547KB Prediction Model LSTM
1
为提高电力负荷预测的准确性,提出蝙蝠算法优化极限学习的电力负荷预测模型.首先收集电力负荷历史数据,然后采用蝙蝠算法对延迟时间和嵌入维以及极限学习的隐含层结点数目进行优化,利用电力负荷历史数据进行重构,最后采用最优隐含层结点数目的极限学习机建立电力负荷预测模型,并采用具体数据仿真测试.实验结果表明:模型建立了整体性能优异的电力负荷预测模型,提高了电力负荷的预测精度.
1
通过扰动观测器设计用于扰动系统的预测精度增强的连续时间MPC
2021-09-13 14:22:53 960KB 研究论文
1
粒子群算法优化灰色模型,提高模型的预测精度 采用粒子群算对灰色模型中的参数进行优化,提高模型的预测精度
2021-07-04 14:09:04 5KB 粒子群算法