介质棒天线(Dielectric Rod Antenna,简称DRA)是一种重要的端射天线类型,在无线通信系统和成像系统中有广泛应用。它的主要工作原理是利用介质棒末端的辐射孔径增大,从而获得较高的增益。通常,这种端射天线对前后比(Front-to-Back Ratio)有较高的要求,以确保能够有效抑制背向辐射。 然而,在封闭的矩形波导与介质棒之间的不连续性处,会形成背向波,沿着与端射方向相反的方向传播,从而产生背向辐射。同时,这种结构不连续性处也会产生泄漏波,这不仅是一种能量浪费,还对辐射模式产生不良影响。结构上的不连续性同样对阻抗匹配性能产生负面影响。 为了解决这个问题,已经提出了不同的设计,例如锥形馈电结构,但这种方式的空间占用较多,不利于集成和紧凑型应用。此外,有研究提出了在平面印刷的H平面喇叭天线与自由空间之间的阻抗匹配性能上,使用过渡结构来改进并增加前后比。这类过渡结构更容易集成在紧凑和平面结构中。 本文中提出的改进方法是通过引入一个过渡段来改善介质棒天线的辐射性能和波导与介质棒之间的阻抗匹配。研究结果显示,采用这种过渡结构能够显著减少背向辐射,并提高增益。此外,在宽带频率范围内,阻抗匹配性能也能得到改善。 本研究的摘要中指出,通过分解近场来分析介质棒天线不同部分的远场辐射特性,并通过引入过渡段来改善辐射性能。研究结果表明,过渡段的使用能够显著减少背向辐射,并提高增益。同时,阻抗匹配性能在宽带频率范围内得到了改善。这些发现对于介质棒天线的设计优化具有重要意义。 关键词包括介质棒天线、端射、阻抗匹配。 在介绍中,文章明确指出介质棒天线是一种重要的端射天线类型,它们广泛应用于无线通信系统和成像系统中。传统上,介质棒天线是通过矩形或圆形波导来馈电,并通过介质棒末端的渐缩设计来生成一个较大的终端辐射孔径,从而实现较高的增益。 本文提出的方法通过引入一个特殊的过渡段来优化介质棒天线的辐射特性,并改进波导与介质棒之间的阻抗匹配。这种过渡段的引入减少了背向辐射,提高了天线的增益,并且在较宽的频率范围内改进了阻抗匹配性能。这不仅有助于增强天线的辐射性能,也使得天线在实际应用中的兼容性和集成度得到提升。 在天线设计和优化领域,阻抗匹配是一个关键问题。良好的阻抗匹配可以减少能量反射,提高天线的辐射效率和信号传输质量。本文提出的改进措施对于理解介质棒天线的物理机制和工程实现提供了新的视角和方法,特别是在无线通信系统中对于提高天线性能和减少系统干扰方面具有重要价值。 总结而言,介质棒天线的辐射和阻抗性能的改善不仅关系到天线的增益和方向性,还直接影响到天线在无线通信系统中的应用效果。通过过渡段的优化设计,能够在不增加太多额外体积的情况下,有效解决结构不连续带来的问题,这对于提升天线性能和推广其在各种通信系统中的应用具有重要意义。同时,该研究也表明了结构设计在天线性能优化中的重要性,为未来的天线设计和优化工作提供了新的思路和方法。
2025-05-16 14:15:27 203KB 研究论文
1
针对工业机器人的控制精度与响应速度问题, 提出一种基于位置的模糊 PID 阻抗控 制算法, 对机器人进行力控仿真研究, 根据拉格朗日方程和 Simulink 仿真平台搭建六自由度工 业机械臂控制仿真, 对其进行正逆运动学及动力学分析, 验证所提算法的有效性和适用性, 结果表 明该算法具有良好的控制效果, 进一步降低控制过程的接触力与位置误差, 提高机器人控制精度。 关键词: 工业机器人;Simulink 仿真; 阻抗控制; 模糊 PID
2025-05-11 17:12:33 1.16MB matlab
1
阻抗匹配-串并转换工具,快速进行阻抗匹配,在无Smith工具情况下使用
2025-05-07 15:36:15 39KB
1
内容概要:本文档详细介绍了基于STM32F103C8T6的体脂秤开发方案,涵盖了硬件架构设计、核心代码实现、关键外设驱动以及开发注意事项。硬件部分包括HX711体重测量模块、AD5933生物阻抗分析模块、OLED显示屏和WiFi数据上传模块。软件部分实现了体重测量、生物阻抗测量、体脂率和肌肉量计算等功能。通过主程序框架将各个模块有机结合起来,实现了完整的体脂秤功能。此外,还提供了滑动平均滤波等优化措施,确保数据准确性。最后,文档还提到了一些扩展功能,如蓝牙连接、语音播报和多用户管理等。 适合人群:具有嵌入式开发基础,尤其是对STM32平台有一定了解的研发人员。 使用场景及目标:①学习STM32平台下的传感器融合技术;②掌握体重、生物阻抗等数据的采集与处理方法;③理解体脂率计算模型及其应用。 其他说明:文档提供完整C++源码及校准参数配置文档,适合希望深入了解体脂秤工作原理并进行二次开发的技术人员。阅读时建议结合实际硬件进行调试和验证。
2025-04-29 20:23:18 25KB 嵌入式开发 STM32 传感器融合 WiFi通信
1
阻抗导纳控制:基于Matlab Simulink的参数仿真与优化研究,阻抗导纳控制:基于Matlab Simulink的参数仿真与优化研究,阻抗控制 导纳控制 Matlab simulink 参数仿真 参数优化 可仿真不同的MBK参数值 ,阻抗控制; 导纳控制; Matlab simulink; 参数仿真; 参数优化; MBK参数值,"阻抗导纳控制:Matlab Simulink参数仿真与优化" 阻抗导纳控制是一种重要的机械系统和机器人控制系统中的技术,它涉及到阻抗控制和导纳控制两种控制策略。在Matlab Simulink环境下进行参数仿真与优化是这一研究领域的常见实践。通过仿真与优化,可以精确地模拟控制系统的动态行为,并对系统的性能进行评估和提升。 阻抗控制主要关注系统与环境之间的力学交互,它能够保证机械系统的运动与环境之间保持某种预定的关系,如阻抗控制使得机械臂能够根据外部环境的接触力来调整其位置和速度。而导纳控制则是阻抗控制的另一种形式,它通过调整机械系统的动态特性来响应外部输入的力,使得系统能够与外部环境形成某种预期的运动关系。 Matlab Simulink作为一个强大的仿真和建模工具,允许研究人员对控制系统的参数进行模拟和调整,进而优化系统的性能。在仿真过程中,可以对不同的参数组合进行测试,以便找到最佳的控制参数。例如,MBK参数值(Mass-Beam-Kirchhoff参数)是模拟弹性体的刚度和质量的重要参数,在阻抗导纳控制中尤为重要。 本文档集合中包含了多个关于阻抗控制与导纳控制的文件,这些文件涉及了该技术在机械系统和机器人自动化系统中的应用。其中,部分文档以.doc格式出现,包含了详细的文字描述和案例分析;而有的以.html格式存在,可能是网页形式的文档,适合在线阅读;还有.txt格式的文件,这种格式通常用于保存纯文本数据,可能是代码或者未格式化的数据;此外,还有图片文件,虽然文件名仅提供了“1.jpg”和“2.jpg”这样的信息,但它们可能是相关的图形说明或结果展示。 这些文件共同构成了一个完整的关于阻抗导纳控制技术的研究资源库,涵盖了从理论分析到实际应用的各个方面。通过对这些文件的研究,可以更好地理解阻抗导纳控制在现代机械系统和机器人自动化系统中的应用和优化方法,为相关领域提供重要的技术和理论支持。
2025-04-29 15:27:25 115KB
1
COMSOL 6.2 有限元仿真模型:1-3压电复合材料厚度共振模态、阻抗相位与表面位移动态分析的几何参数可调版,"COMSOL 6.2有限元仿真模型:1-3压电复合材料厚度共振模态、阻抗相位曲线及表面位移仿真的深度探索",COMSOL有限元仿真模型_1-3压电复合材料的厚度共振模态、阻抗相位曲线、表面位移仿真。 材料的几何参数可任意改变 版本为COMSOL6.2,低于此版本会打不开文件 ,COMSOL有限元仿真模型;压电复合材料;厚度共振模态;阻抗相位曲线;表面位移仿真;几何参数可变;COMSOL6.2。,COMSOL 6.2压电复合材料厚度模态与阻抗仿真的研究报告
2025-04-25 20:52:02 168KB css3
1
六自由度机器人动力学与恒力控制MATLAB代码,六自由度机器人动力学与恒力控制MATLAB代码,模型,基于动力学的六自由度机器人阻抗恒力跟踪控制实现,MATLAB代码,可完美运行。 供研究学习使用,附学习说明文档,零基础勿。 MATLAB,机器人动力学,恒力控制,六自由度。 ,模型;动力学;机器人阻抗;恒力跟踪控制;MATLAB代码;完美运行;学习说明文档。,六自由度机器人阻抗恒力跟踪控制MATLAB实现 随着工业自动化和智能制造的发展,六自由度机器人在生产、医疗、航空航天等领域中的应用越来越广泛。六自由度机器人是指具有六个独立旋转关节的机器人,这种结构使机器人能够执行复杂的三维空间运动。动力学是研究物体运动及其原因的科学,对于机器人来说,动力学模型能够帮助我们理解和预测机器人在执行任务时的运动行为。 在控制六自由度机器人时,恒力控制是一个非常重要的技术。恒力控制是指让机器人施加在接触表面的力保持恒定,这在磨削、抛光等操作中尤为重要。为了实现精确的恒力控制,需要对机器人的动力学模型有深入的理解,并设计出能够精确控制机器人运动和施力的算法。 MATLAB是一种广泛使用的数值计算和仿真软件,它提供了丰富的工具箱和函数库,尤其适合进行复杂算法的开发和测试。在研究和开发六自由度机器人控制系统时,可以使用MATLAB编写动力学模型和控制算法,通过仿真来验证控制策略的有效性。 本套提供的MATLAB代码专门针对六自由度机器人的动力学和恒力控制进行模拟和分析。代码基于动力学模型,实现了阻抗控制和恒力跟踪控制,旨在帮助研究人员和学生深入理解机器人在进行力控制时的工作原理和性能表现。该套代码不仅包含核心算法的实现,还附带了学习说明文档,指引用户如何安装和运行这些代码,以及如何解读仿真结果。 通过运行这些MATLAB代码,研究人员可以观察机器人在执行恒力控制任务时的动态响应,并对控制参数进行调整,以达到最佳的控制效果。例如,可以在不同的负载、速度、摩擦条件下测试机器人的恒力控制性能,分析系统稳定性和精确度,从而进一步优化控制策略。 此外,本套文件还包含了多个docx和html格式的文档,这些文档可能是对相应模型和控制策略的详细说明,也可能是一些背景知识的介绍,或者是具体案例的分析报告。这些文档为理解代码的理论基础和应用背景提供了参考资料,对于零基础用户来说,它们是学习机器人动力学和控制理论的重要辅助材料。 本套资料为机器人动力学和恒力控制的学习和研究提供了一套完整的工具和资料,有助于提高研究效率,缩短研究周期,并为相关领域的技术进步贡献力量。
2025-04-20 18:08:18 3.73MB edge
1
"基于谐波线性化方法的MMC交直流侧阻抗建模技术及其扫频验证的实践研究",基于谐波线性化方法的MMC交直流侧阻抗建模及其实验扫频验证研究,采用谐波线性化方法的MMC交直流侧阻抗建模及扫频验证 ,关键词:MMC;谐波线性化方法;交直流侧阻抗建模;扫频验证; 以上内容用分号分隔的关键词为:MMC; 谐波线性化方法; 交直流侧阻抗建模; 扫频验证;,MMC交直流侧阻抗建模及扫频验证的谐波线性化方法 在当今电力电子技术领域,模块化多电平换流器(MMC)作为一种高效、灵活的电力转换设备,在电网系统中的应用越来越广泛。MMC能够实现高电压等级的电力变换,尤其适合于高压直流输电系统(HVDC)以及大规模储能系统。为了更好地理解和预测MMC的动态行为,准确地建立其交直流侧的阻抗模型显得尤为重要。这不仅关系到系统的稳定性和安全性,也是系统设计和运行优化的关键。 谐波线性化方法是一种用于分析非线性系统动态特性的数学工具,通过在特定工作点附近对系统进行线性化处理,来简化复杂的非线性问题。在MMC的交直流侧阻抗建模中,谐波线性化方法能够帮助我们获得在特定工作条件下系统的等效线性模型,从而分析其频率特性,这对于系统设计和控制策略的制定具有重要意义。 交直流侧阻抗建模是指对于电力电子设备在交流侧和直流侧的电抗特性进行数学表达的过程。这种建模过程能够揭示设备对电网频率波动的敏感度,以及其对电网稳定性的影响。通过阻抗模型,研究人员和工程师可以评估不同操作条件和故障情况下设备的响应,从而为设备设计和电网规划提供理论依据。 扫频验证是一种实验方法,通过系统地改变输入信号的频率,来测试和验证所建立模型的准确性。在MMC的交直流侧阻抗建模中,扫频验证能够确保模型在不同频率下的可靠性和有效性,有助于优化控制器设计,确保系统在实际运行中的稳定性和性能。 为了深入研究MMC的交直流侧阻抗建模及其实验扫频验证,本研究采用了谐波线性化方法。通过理论分析和数学建模,确定了MMC的基本工作原理和电路结构,然后运用谐波线性化技术,建立起了交直流侧的阻抗模型。在此基础上,通过搭建实验平台和采用扫频技术,对所建立的模型进行了验证。实验结果表明,所提出的建模方法和模型能够准确地反映MMC在不同工作条件下的阻抗特性。 本研究的成果不仅为MMC的深入研究提供了新的思路和方法,也对实际工程应用具有重要的指导价值。随着可再生能源的不断发展和智能电网技术的推进,MMC作为一种关键设备,其交直流侧阻抗建模及其验证技术的重要性将会日益凸显。未来的研究工作可以在此基础上进一步深化,如考虑系统的非理想因素、改善模型的精度以及拓展到更宽广的应用领域。 本文通过对MMC交直流侧阻抗的谐波线性化建模及扫频验证的研究,不仅丰富了电力电子领域的理论知识,也为实际工程设计和系统分析提供了有效的工具。随着研究的进一步深入,这一领域的技术进步有望推动电力系统向更高效、更可靠、更智能的方向发展。
2025-04-03 16:32:18 309KB 数据结构
1
在电子设计领域,PCB(Printed Circuit Board)即印制电路板,是电子设备中不可或缺的一部分。PCB设计不仅涉及到电路的布局和连接,还需要考虑信号完整性和电源完整性,其中,阻抗控制是尤为关键的一环。"PCB 阻抗计算工具"就是专门用来解决这一问题的辅助软件,它帮助设计师精确地计算出PCB上的线路宽度,以确保信号传输的质量。 PCB中的阻抗计算主要涉及到以下几个核心概念: 1. **特性阻抗**:特性阻抗是PCB线路中电信号传播时遇到的一种等效电阻,它决定了信号在传输过程中的衰减和反射。保持线路的特性阻抗恒定可以减少信号失真,提高电路性能。 2. **线宽**:线宽是决定PCB线路阻抗的重要因素。线宽越宽,电阻越小,阻抗越低;线宽越窄,电阻越大,阻抗越高。因此,根据设计需求,选择合适的线宽至关重要。 3. **介质厚度**:PCB线路通常位于一层或多层绝缘材料(如FR-4)之间,介质的介电常数和厚度会影响线路的电容,进而影响特性阻抗。 4. **铜厚度**:线路表面覆盖的铜层厚度也会影响阻抗。铜厚增加会增加线路的电导率,从而降低阻抗。 5. **间距**:相邻信号线之间的距离会影响它们之间的耦合,进而影响特性阻抗。适当的间距能降低串扰,提高信号质量。 6. **参考平面**:通常是PCB的地平面或电源平面,为信号提供返回路径,对阻抗控制有直接影响。 "PCB 阻抗计算工具"正是基于这些原理,通过输入参数如频率、介质材料参数、铜厚、线宽、间距等,来计算出线路应设计的精确尺寸。这些工具通常具有用户友好的界面,只需要输入必要的设计参数,就可以快速得到计算结果,极大地提高了设计效率。 例如,压缩包内的"CITS25_阻抗线宽度计算"可能是一款这样的工具,它可能包含了多种不同的计算模型,适用于单端线、差分线、微带线、带状线等多种PCB布线结构。用户可以根据具体的设计需求,选择相应的计算模式,并输入相应的参数,工具将自动计算出最佳的线宽值。 PCB 阻抗计算工具是PCB设计中的得力助手,它使得复杂的电磁理论计算变得简单,帮助工程师确保PCB设计的电气性能,以满足高速、高频率、低噪声的现代电子设备需求。
2025-03-28 17:33:48 938KB
1
PCB线宽阻抗计算器,表格
2025-03-28 16:36:50 25KB 阻抗计算
1