内容概要:本文介绍了基于灰狼优化算法(GWO)优化的二维最大熵(2DKapur)图像阈值分割技术。该方法通过模拟灰狼的狩猎行为,在搜索空间中快速找到使二维熵最大的阈值对,从而提高图像分割的准确性和效率。文中以经典的lena图像为例,展示了如何在MATLAB中实现这一过程,包括图像读取、均值滤波、定义二维阈值空间、计算熵以及最终的阈值分割步骤。 适合人群:从事图像处理研究的技术人员、研究生及以上学历的学生,尤其是对优化算法和图像分割感兴趣的读者。 使用场景及目标:适用于需要高精度图像分割的应用场景,如医学影像分析、遥感图像处理等领域。目标是通过结合GWO算法和二维最大熵方法,提升图像分割的效果和效率。 其他说明:未来可以进一步探索将其他优化算法应用于阈值分割中,以实现更加高效的图像处理。此外,文中提供的MATLAB代码示例为读者提供了实际操作的基础。
2025-11-20 09:48:02 383KB
1
C++实现峰值检测,可根据阈值、峰值距离筛选峰值等同于matlab findpeak函数 头文件如下 #ifndef __FINDPEAKS__ #define __FINDPEAKS__ #include struct peak { int index; float value; }; bool comparePeaks(const peak& a, const peak& b); bool compareIndex(const peak& a, const peak& b); std::vectorfindPeaks(const std::vector& src, int distance = 0, float threshold = 0); #endif
2025-10-29 16:45:38 1KB matlab
1
**正文** 多阈值图像分割是计算机视觉领域中一种重要的图像处理技术,广泛应用于医学影像分析、遥感图像处理、模式识别等多个场景。在给定的"多阈值图像分割CPSOGSA Matlab"项目中,核心算法是基于复合粒子群优化算法(Composite Particle Swarm Optimization, CPSOGSA)实现的,这是一种改进的粒子群优化算法,用于解决图像的多级阈值分割问题。 粒子群优化算法(Particle Swarm Optimization, PSO)是受到鸟群觅食行为启发的全局优化方法,其基本思想是通过群体中的粒子相互学习和竞争来寻找最优解。CPSOGSA则在PSO的基础上引入了混沌理论和模拟退火算法,提高了算法的全局搜索能力和收敛速度,以适应复杂多变的多阈值分割任务。 在Matlab环境中,开发者利用其强大的数值计算和图形处理功能,构建了CPSOGSA算法的实现框架。Matlab代码通常包括初始化参数设置、粒子位置和速度更新规则、适应度函数设计、混沌操作和模拟退火策略等部分。适应度函数通常是根据图像分割的质量指标,如Otsu's方法、 entropy、灰度共生矩阵等来定义的。 在这个项目中,用户可以输入待处理的图像,并通过调整CPSOGSA的参数来优化分割效果。这可能包括粒子数量、混沌序列参数、退火温度等。程序将自动进行多次迭代,找到一组合适的阈值,将图像分割为多个等级的区域。分割结果通常会以可视化的方式展示,便于用户直观地评估分割质量。 在实际应用中,多阈值图像分割常用于识别图像中的不同特征区域,例如医学图像中的病灶、遥感图像中的地物分类等。通过CPSOGSA这样的优化算法,可以有效地克服传统固定阈值分割方法的局限性,适应图像的复杂性和不确定性。 "多阈值图像分割CPSOGSA Matlab"项目结合了先进的优化算法和强大的编程工具,为科研人员和工程师提供了一个灵活且高效的图像处理解决方案。通过对Matlab代码的理解和参数调优,用户可以应用于自己的特定图像分割任务,实现更精确的区域划分和目标识别。同时,该项目也为深入研究和改进图像分割算法提供了基础平台。
2025-10-13 14:10:20 102KB matlab
1
显示器性能测试与图像处理技术一直以来都是电子显示行业的重要研究课题。在这一领域内,响应时间、亮度量化分析以及色彩还原等参数对于评价显示器质量至关重要。本压缩包文件中包含的资料,即是围绕这些关键技术进行深入探讨的工具和文档。 响应时间是指显示器从接收信号到画面稳定显示所需的时间,它直接关系到显示器播放动态画面的流畅度。响应时间越短,用户在观看高速运动场景时所感受到的拖影和模糊现象就越少,这对于游戏玩家和专业图形设计人员尤为重要。为了解决这一问题,研究者开发了多种响应时间计算算法,这些算法能够准确测量并分析显示器的响应速度,帮助制造商优化其产品。 亮度量化分析系统是评估显示器亮度表现的重要工具。亮度是显示器能够展现的最亮和最暗画面间的亮度差异。高动态范围(HDR)技术的兴起使得亮度量化更加复杂,但同时也提供了更广阔的色彩和亮度表现空间。文档中提到的基于ST2084标准和gamma曲线的电视显示器响应时间测量工具,指的是一种符合国际标准的亮度量化方法。ST2084标准,也称为HLG(Hybrid Log Gamma),是一种HDR视频的亮度编码标准,能够为显示器提供更准确的亮度量化参考。 此外,该工具支持自定义稳定时间百分比阈值,这意味着用户可以根据自己的需求设定一个时间标准,以此来判断显示器在该时间范围内是否达到亮度稳定。这一功能对于追求极致画面质量的专业人员来说尤为有价值,因为它可以帮助他们选出最适合他们工作需求的显示器。 该压缩包还提供了两种亮度量化模式选择,这可能意味着用户可以根据不同的应用场景选择不同的亮度量化模式,如家庭影院模式和专业图像处理模式等。不同的量化模式可以针对不同的使用环境和用户需求,对显示器的亮度表现进行优化。 文件名称列表中的“附赠资源.docx”可能包含了更多关于显示器性能测试的实用技巧、工具使用说明或案例分析,而“说明文件.txt”则可能提供了对软件工具安装、使用方法等基本操作的指导。至于“preloook_display_od_test-main”这个文件夹,听起来像是软件工具的主文件夹,可能包含了软件的源代码、可执行文件以及相关的开发文档。 这些文件资料为显示器性能测试和图像处理提供了全面的技术支持,从响应时间的精确测量到亮度量化的深度分析,再到使用场景的个性化选择,都体现了对显示器质量要求日益提高的现代电子显示技术的追求。
2025-10-11 16:52:08 16.19MB
1
本资源提供一种基于C/C++的高效突发信号检测算法,适用于无线通信中常见突发信号(如AIS、ACARS、ADS-B、VHF数据链等)的实时或离线分析。代码实现以下核心功能: 动态噪声估计:采用滑动窗口和抽样统计技术,自适应计算噪声基底。 智能阈值调整:结合信号幅度与噪声特性,动态生成检测门限,提升灵敏度。 突发参数可配置:支持自定义突发长度范围(minBurstLen/maxBurstLen)、检测阈值(thresholdFactor)等关键参数。 完整示例:提供从文件读取IQ数据、检测逻辑到执行时间统计的一站式示例,便于快速集成到通信系统或科研项目中。 适用场景: 无线通信系统开发(SDR、协议解析) 航空航天信号分析(ADS-B、ACARS) 海事AIS信号处理 信号处理算法教学与科研
2025-09-24 14:56:03 7KB 信号处理 ACARS ADSB
1
基于51单片机煤气天然气检测阈值报警风扇设计 设计一款可以实现常见可燃气体检测、报警、险情处置功能的装置: 1.可以实时监测环境有无可燃气泄露。 2.具备本地、报警功能。 3.当燃气浓度达到上限、启动报警,并启动排风扇开始通风。 本设计研究的是一款基于51单片机的煤气天然气检测阈值报警风扇,其核心思想在于通过电子手段有效检测环境中的可燃气体浓度,并在检测到危险阈值时发出警报,同时采取措施如启动排风扇进行通风以降低危险。在现代社会,随着天然气的广泛应用,其作为“危险品”的风险也日益凸显,特别在居民生活中,一旦发生泄漏,如未及时处理,可能会引发大爆炸,带来生命财产的重大损失。因此,开发一种实用性强、稳定可靠、成本低廉且智能化的可燃气体报警器是十分必要且迫切的。 本文的设计采用了半导体气敏传感器MQ-2,该传感器具有灵敏度高、响应快速、抗干扰能力强、使用寿命长以及价格低廉等优点,非常适合用于检测空气中的一氧化碳、氢气、天然气等可燃气体的浓度。传感器将采集到的数据通过模拟到数字(A/D)转换,以便单片机进行处理和分析。系统会根据预设的报警阈值进行判断,若检测到的气体浓度超过该阈值,则单片机会控制报警电路发出声音警报,并触发继电器启动排风扇进行通风。反之,若浓度在安全范围之内,则系统保持正常状态。 第一章绪论中,作者详细介绍了课题的背景及意义,分析了室内环境质量对人们身心健康的影响,并指出室内有害气体的来源,包括不恰当装修导致的化学物质释放、以及可燃性气体的泄漏等。文章还重点讨论了煤气、液化石油气和天然气的成分、危害和预防措施,并引出开发可燃气体泄漏报警器的重要性和迫切性。此外,作者还回顾了国内外可燃性气体泄漏报警器的研究状况和发展趋势,指出了当前技术中一些关键的发展方向,如提高灵敏度、降低功耗、增强可靠性和多功能集成等。 通过对上述内容的深入分析和研究,本文提出了一种基于51单片机技术的气体报警器设计方案。该方案不仅能够满足基本的声光报警功能,而且在检测到气体浓度超标时能自动启动排风扇通风,进一步降低了泄漏事故带来的风险。这种设计不仅具有较高的实用价值,而且在实现安全保护的同时,还具有成本低、操作简便的优点,特别适合推广使用于家庭和其他需要监测可燃气体浓度的场所。
2025-09-16 15:14:04 1.61MB 可燃气体检测
1
本资源提供小波阈值去噪的完整 Python 实现,支持硬阈值、软阈值和 Garrote 阈值三种去噪策略,可自定义小波基类型、分解层数和阈值计算方式。代码包含噪声标准差估计、边界效应处理等细节,并通过生成含噪正弦波信号测试不同阈值方法的去噪效果。可视化部分将软阈值和 Garrote 阈值结果分开绘制,便于对比分析。适用于振动信号、生物医学信号等领域的噪声去除,可作为信号处理预处理模块直接集成到项目中。
2025-07-03 16:21:41 1KB python 信号处理 小波阈值 小波降噪
1
基于51的数码管大气压强检测系统 项目简介: 实时显示大气压力值,当超过设定阈值后,有声光报警提示。 探测范围:15-115kpa,误差0.3。 项目器件: 数码管、STC89C51 52、ADC0832数模转芯片 项目算法:气压与电压的线性转关系,注释有。 发挥清单:代码+仿真图 基于51单片机的数码管大气压强检测系统是一个电子项目,主要功能是实时监测大气压力,并在压力超出预设阈值时通过声光报警来提醒用户。这个系统采用的探测范围为15至115kpa,允许的误差为±0.3kpa,确保了测量结果的准确性。系统的主要组成部分包括数码管显示器、STC89C51或STC89C52单片机以及ADC0832模数转换芯片。 STC89C51/52单片机属于8051系列的微控制器,常用于各类电子项目中,因为它具有成本低廉、性能稳定的特点。而ADC0832是一款具有串行输出的模数转换器,能够将模拟信号转换为数字信号,以便于单片机进行处理。这些硬件设备共同协作,实现了对大气压力的检测和显示。 该项目的软件部分包含了完整的代码和仿真图,这些代码详细说明了如何将气压值转换为电压信号,并通过线性转换关系计算出实际的大气压力值。代码中应该有对应的注释,方便用户理解程序的运行逻辑和算法。而仿真图则能够提供直观的视觉效果,帮助开发人员在实际搭建电路前进行验证。 技术文档的内容涵盖了项目的整体介绍、具体实现、技术细节分析等。从文件列表中可以看到,文档的格式包括Word文档和HTML网页,这表明项目的资料可能以多种方式呈现,以满足不同的阅读习惯或使用场景。另外,还有一些文本文件,如引言和介绍,提供了系统的背景信息和设计理念。 这个基于51单片机的数码管大气压强检测系统是一个集成了硬件设计与软件编程的完整项目,能够有效地进行大气压力的实时监测,并通过声光报警系统来提高用户的警觉性。该系统在环境监测、气象站、户外运动等多个领域都有潜在的应用价值。
2025-06-24 14:41:39 228KB gulp
1
基于51的液晶大气压强检测系统 项目简介: 1602开机显示使用界面,工作后实时显示大气压力值,当超过设定阈值后,有声光报警提示。 探测范围:15-115kpa,误差0.3。 项目器件: 1602、STC89C51 52、5v蜂鸣器、ADC0832数模转芯片 发清单:代码+仿真图 在当今科技迅猛发展的背景下,智能检测设备已成为许多领域不可或缺的工具。基于51单片机的液晶大气压强检测系统,是利用现代电子技术和计算机技术对大气压强进行实时监测的一种智能化设备。该系统以STC89C52单片机为核心,通过集成的1602液晶显示屏为用户界面,能够实现大气压力值的实时显示,并在压力值超过预设阈值时通过声光报警的方式提醒用户。 该系统的探测范围为15-115kpa,精度误差为0.3kpa,能够满足大多数情况下对大气压强监测的需求。系统中的核心部件包括STC89C51单片机,负责整个系统的控制逻辑和数据处理;1602液晶显示屏用于显示系统的工作界面及实时的环境参数;5v蜂鸣器用于发出声音报警信号;ADC0832数模转换芯片则负责将传感器采集到的模拟信号转换为数字信号,以便单片机处理。 系统的开发涉及到硬件设计和软件编程两个主要方面。硬件设计包括电路图的绘制、电路板的焊接与布局,以及各电子元件的选型与采购。软件编程则涉及到编写用于控制单片机运行的程序代码,并通过仿真软件进行调试,以确保程序能够在实际硬件上稳定运行。此外,项目还可能包括系统调试、测试和优化等步骤,以达到更好的性能和用户体验。 在技术实现方面,该系统采用了模块化的设计理念,各个部分功能独立但又能协同工作。例如,探测模块负责采集大气压强数据,处理模块负责分析数据并作出决策,显示模块负责将结果以直观的形式呈现给用户。这样的设计使得系统的可扩展性较强,未来可以方便地升级和增加新功能。 在技术文章中,通常会详细阐述系统的工作原理、设计思路、关键技术和实际应用效果等。例如,技术文章会介绍如何利用STC89C52单片机的I/O端口读取传感器数据,以及如何通过编程实现对1602液晶显示屏的控制和数据动态显示。同时,也会对系统的误差来源、影响因素进行分析,并提出相应的解决方案。在技术分析文章中,作者可能会探讨在不同环境条件下系统的稳定性和可靠性,并对可能出现的故障进行诊断和解决。 基于51单片机的液晶大气压强检测系统是一个集成了现代电子技术和计算机技术的智能监测设备。它的研发对于推动相关技术的发展和应用具有重要的意义,同时也为用户提供了实时监测大气压强、提高工作和生活安全的有效工具。
2025-06-24 14:40:42 254KB edge
1
POA-VMD+降噪(鹈鹕优化VMD结合余弦相似度和小波阈值进行降噪) 1.分解部分 (POA-VMD)采用鹈鹕优化变分模态分解 寻优对象:k α 包含10种适应度函数 可出适应度曲线图 分解图 频谱图 三维分解图和α、K位置随迭代变化图 适应度函数包括: 1.综合评价指标2.包络熵3.包络谱峭度值4.幅值谱熵5.模糊熵 6.皮尔逊系数7.峭度值8.样本熵9.排列熵10.信息熵 2.分量筛选 采用余弦相似度评判分解分量与原序列间的余弦相似度,设定阈值,将含躁分量提取出, 3.降噪 通过阈值小波进行降噪, 降噪方法包含(可根据降噪效果选取最合适的方法。 ) %软小波阈值降噪 %硬小波阈值降噪 %改进小波阈值降噪(阈值函数曲线见链接图片) 以西储大学数据为例效果如图 matlab代码,含有部分注释; 数据为excel数据,使用时替数据集即可; , ,中心电感振动数据为基础进行噪音治理的POA-VMD变分模态分解降噪法,POA-VMD降噪技术,POA-VMD; 鹈鹕优化VMD; 降噪; 余弦相似度; 小波阈值; 分解部分; 寻优对象; 适应度函数; 分量筛选; 西储大学,轴承故障信号P
2025-06-21 22:18:45 2.83MB istio
1