内容概要:本文介绍了一款基于Maxwell仿真的4极6槽内转子永磁同步电机(PMSM/BLDC),该电机具有15000rpm的高转速、220mNm的大扭矩、89%的高效率和120W的功率。电机尺寸紧凑,外径48mm,内径27mm,轴向长度40mm,采用36V直流母线供电。Maxwell仿真软件在电机设计过程中发挥了重要作用,帮助优化电磁性能。电机结合了永磁同步电机和直流无刷电机的优势,实现了高效稳定运行。文中还展示了简单的电机控制代码片段,介绍了电机的启动和停止方法。最后提到该电机设计方案已经开模,可以大量生产,降低了生产成本,提高了成本效益。 适合人群:电机设计工程师、电气工程师、制造业从业者、科研人员。 使用场景及目标:适用于需要高效、可靠且具有成本效益的电机解决方案的企业,如家电制造、工业自动化等领域。目标是提供一种高性能、低成本的电机选择。 其他说明:该电机设计方案已经在实际生产中得到验证,具备良好的市场前景和技术可行性。
2025-09-16 16:04:11 1.19MB
1
【MATLAB一维PCHE微通道热器模型】 【能源工质系统相关研究本科毕设】 1. 可根据系统中设计得到的PCHE进出口节点温度参数来计算PCHE长度以及热量 2. PCHE运用湍流型长直半圆通道Gnielinki方程计算流动热的努塞尔数 3.MATLAB调用Refprop物性库求解流动的普朗特数 ,MATLAB; PCHE微通道换热器模型; 湍流型长直半圆通道Gnielinki方程; 努塞尔数计算; Refprop物性库。,MATLAB模型在能源工质系统中的应用:PCHE微通道换热器研究
2025-09-15 18:59:37 1.02MB 数据结构
1
在自行车的组装与维护中,辐条长度的计算是一项至关重要的任务,因为它直接影响到轮圈的稳定性和骑行的性能。"最好的辐条长度计算器"是一个专为前端单车开发者设计的工具,它集成了多种计算模式,包括直头辐条、G3分布以及各种2:1的辐条配置方式,使得这一过程更为精确且方便。 我们要理解直头辐条的计算。直头辐条是最常见的类型,它的一端连接到轮圈,另一端连接到花鼓。计算直头辐条的长度通常需要考虑的因素有轮圈直径、花鼓宽度、辐条角度以及张紧度。这个计算器可以简化这些复杂的计算,只需要输入必要的参数,就能得出合适的辐条长度。 G3分布是一种非对称的辐条排列方式,旨在提高轮组的刚性和平衡。G3方案中,一侧的后轮辐条数量比另一侧少,通常为3:2的比例,这样的布局能有效分散应力,提升骑行的舒适性。在G3计算模式下,计算器会考虑这种特殊的分布,确保每根辐条长度的精确。 接着,2:1的辐条配置是另一种优化轮组性能的方式。在这种布局中,一侧的辐条数量是另一侧的两倍,通常用于前轮以增强稳定性。这种分布可以改善轮组的径向刚性,减少风阻,提高骑行效率。计算器会考虑到不同2:1比例下的最佳长度,确保每根辐条都能均匀地承受负载。 这款"最好的辐条长度计算器"不仅考虑了上述各种计算模式,而且在功能上超越了现有的国外同类产品,为中国的单车爱好者和专业技师提供了极大的便利。它简化了计算流程,降低了误差,使得即使是没有深厚理论基础的用户也能轻松进行辐条长度的计算。 此外,基础版V2可能包含了更多的改进和优化,比如更友好的用户界面、更精确的算法模型、可能的自定义设置选项等。这样的工具对于前端单车开发者来说,无疑是一个宝贵的资源,能够帮助他们快速准确地完成工作,提升工作效率。 "最好的辐条长度计算器"是一个强大的工具,它整合了各种复杂的计算方法,专为满足自行车爱好者和专业技师的需求而设计。无论你是新手还是资深玩家,都可以通过这个计算器找到适合自己的辐条长度,从而打造出更稳定、性能更佳的自行车轮组。
2025-08-11 17:30:32 6.33MB 前端单车 辐条长度
1
在当前快速发展的数字游戏产业中,Unity3D作为一款流行的游戏开发引擎,其强大的功能和灵活性使得开发者能够构建各种复杂的三维游戏和应用程序。然而,在模型场景的开发过程中,对于对象的位置、长度和角度等精确度量的需求是无法避免的。因此,开发一款能够测量场景中物体长度和角度的工具显得尤为重要。 Unity3D模型场景等测量长度和角度功能的开发,主要涉及到对Unity引擎内置API的深入理解和运用,以及对三维空间中几何计算的掌握。此类工具的开发,不仅能提高游戏开发的效率,而且可以增强游戏的互动性和沉浸感。通过精确的度量,开发者可以确保场景中的元素在视觉和功能上均达到预期效果,这对于游戏设计的精确性和玩家体验的优化至关重要。 在具体实现上,长度测量功能通常需要基于游戏对象的位置坐标进行计算。开发者可以定义起始点和终点,并通过计算这两点间直线距离来得出长度。至于角度测量,通常涉及的是两个向量之间的夹角计算,或者是三个点构成的平面角度。实现这样的测量功能,开发者可以使用向量数学和三角函数来获取精确的角度值。 Unity3D提供了多种工具和方法来支持这类功能的实现。例如,可以利用Transform组件来获取和操作游戏对象的位置、旋转等属性。同时,Unity的脚本系统允许开发者编写自定义代码来处理复杂的计算逻辑。结合这两者,开发者可以创建出一个交互式的测量工具,它允许用户在运行时选择游戏场景中的两个点,然后自动计算并显示这两点之间的距离和夹角。 例如,MeasureTool.unitypackage这个压缩包文件包含了开发这样一个测量工具所需的所有资源和脚本。开发者可以导入这个包到Unity项目中,然后在编辑器或游戏运行时使用其中的工具进行测量。具体的操作可能包括拖拽选择测量的起点和终点、查看结果的长度和角度数值、甚至是保存这些测量数据等。 除了基本的长度和角度测量,高级功能可能还包含了更复杂的几何测量,比如面积、体积计算等。为了实现这些功能,开发者可能还需要利用或开发一些额外的算法和数学模型。这些工具的出现,无疑提高了游戏开发的准确性和效率,使得最终的产品更加精致和专业。 此外,演示地址所提供的视频链接为开发者提供了直观的学习资源。通过观看视频教程,开发者可以更快地掌握如何使用这个测量工具,以及如何将其应用到具体的项目中去。这也凸显了在Unity3D开发社区中,共享资源和知识的重要性,它帮助推动整个行业的技术进步和知识普及。 Unity3D模型场景等测量长度和角度功能的demo开发,不仅需要深入理解Unity引擎的工作原理,还要求开发者具备扎实的数学和编程基础。通过这样的开发,可以极大地提升游戏开发的效率,同时确保最终产品的精确性和质量。
2025-05-23 10:08:18 13.26MB unity
1
在数字信号处理领域,快速傅里叶变换(FFT)是一种高效计算离散傅里叶变换(DFT)的算法。在FFT中,旋转因子(也称为twiddle factors)扮演着关键角色,它们是复数乘以用于分解DFT计算过程的因子。本项目是一个用MATLAB开发的旋转因子生成器,其主要目标是生成适用于n长度FFT的旋转因子,并可将其导出供C语言或其他编程语言的程序使用,以提高这些程序的执行效率。 我们来理解一下旋转因子的数学概念。对于一个n点的DFT,每个数据点需要与一组复数相乘,这些复数就是旋转因子。旋转因子的公式可以表示为: \[ W_n^k = e^{-j \frac{2\pi}{n} k} \] 其中,\( n \) 是DFT的点数,\( k \) 是从0到\( n-1 \)的索引,\( j \) 是虚数单位。这些因子在FFT算法中被用于将DFT分解成一系列更小的子问题,从而大大减少了计算量。 MATLAB作为一种强大的数值计算环境,提供了便利的数学运算和数组操作,非常适合生成这些旋转因子。通过编写MATLAB脚本,我们可以创建一个函数,输入参数为n,输出为一个包含所有旋转因子的复数矩阵。这个生成器可能会包括以下步骤: 1. 计算旋转角度:\( \frac{2\pi}{n} \) 2. 生成索引序列:0到\( n-1 \) 3. 将旋转角度与索引相乘并应用欧拉公式得到复数形式的旋转因子。 4. 结果可能以列向量的形式返回,每一列对应一个DFT的循环因子。 在生成的`generate_twiddle.zip`压缩包中,应该包含了这个MATLAB函数或脚本,可能命名为`generate_twiddle.m`。用户可以调用这个函数并指定所需的n值,然后将生成的旋转因子矩阵保存为文本文件或二进制文件,以便在C程序或其他语言中加载使用。 在C语言中,这些旋转因子通常会被硬编码为常量或者在编译时静态初始化,以避免运行时的计算开销。这使得C程序在执行FFT时能够更快,因为不再需要动态计算旋转因子。 这个MATLAB开发的旋转因子生成器是一个实用工具,它可以简化在其他编程语言中实现FFT的过程,尤其是当处理不同大小的DFT时,只需调用一次MATLAB程序即可获取所有必要的旋转因子,提高了代码的效率和可移植性。对于进行信号处理、图像处理或者通信系统的开发者来说,这是一个非常有价值的资源。
2024-09-12 15:20:05 1KB matlab
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-05 11:08:01 2.35MB matlab
1
在PowerBuilder(PB)开发环境中,数据窗口(DataWindow)是一种强大的组件,用于显示和操作数据库中的数据。当你需要在多个数据窗口中统一修改字段长度时,手动操作可能会非常耗时且容易出错。本教程将详细介绍如何在PB中批量同步所有数据窗口中的字段长度,以确保一致性。 我们需要理解数据窗口的结构。数据窗口是基于数据源(如SQL查询、表或视图)的,每个字段的属性(包括长度)都来源于数据源。当你在某个数据窗口中修改了字段长度,这通常不会自动影响其他依赖同一数据源的数据窗口。 批量同步字段长度的关键步骤如下: 1. **确定需要修改的字段**:你需要确定需要调整长度的字段名称及其新的长度。这可以通过查看数据库表结构或者原始数据窗口的定义来完成。 2. **获取数据窗口列表**:在PB环境中,你可以通过“项目浏览器”(Project Explorer)查看当前项目中的所有数据窗口对象。这些数据窗口可能分布在不同的PBL(PowerBuilder Library)文件中,例如“pb8_csdn.pbl”。 3. **遍历数据窗口**:编写一个脚本或者利用PB的内建功能,遍历所有数据窗口。对于每个数据窗口,检查其数据源和字段列表,找到目标字段并检查其当前长度。 4. **比较并更新字段长度**:如果目标字段的长度与新定义的长度不符,就需要进行更新。这通常涉及到修改数据窗口对象的`dw_XXX.object.column_YYY.length`属性,其中`dw_XXX`是数据窗口的名字,`column_YYY`是字段名。 5. **保存更改**:在每个数据窗口的属性更新完成后,记得保存更改。这将更新PBL文件中的数据窗口定义,例如“pb8_csdn.pbl”。 6. **编译和测试**:编译修改过的PBL文件(如“pb8_csdn.pbl”和“pb8_csdn.pbt”),确保所有更改都能正确无误地应用。同时,进行单元测试和集成测试,确保字段长度的改变没有对应用程序的功能造成负面影响。 需要注意的是,如果你的数据窗口使用了自定义的SQL查询,而不是直接引用数据库表,那么在同步字段长度时,你还需要相应地更新SQL语句。此外,如果存在数据类型不匹配的情况,可能需要同时调整数据类型以避免潜在的问题。 批量同步字段长度可以大大提高开发效率,减少重复工作。在实际操作中,可以考虑编写自动化脚本或利用PB的API,实现更加灵活和高效的解决方案。同时,记住在进行大规模修改前备份项目,以防止不可预知的错误导致数据丢失。 通过理解PB的数据窗口机制,结合适当的编程技巧,你可以有效地管理和同步数据窗口中的字段长度,保持整个项目的一致性和稳定性。这不仅提升了开发效率,也保证了软件的质量。
1
Dijkstra算法python实现,基于邻接矩阵及优先队列 不仅能够求解其实节点到各个节点的最短路径长度,而且并确定各条最短路径上的节点信息
2024-08-23 11:13:41 5KB python Dijkstra 图与网络
1
在嵌入式开发中,USART(通用同步/异步收发传输器)是微控制器(如STM32)与外部设备通信的重要接口。本话题主要探讨如何在STM32等MCU上,利用普冉PY32实现USART串口的不固定长度数据接收以及printf函数的发送重定向。这一功能在很多实际应用中非常实用,例如远程调试、数据传输等。 我们需要了解USART的基本工作原理。USART是一种全双工通信接口,可以同时进行发送和接收数据。在STM32中,我们通常使用中断(Interrupt)或DMA(直接内存访问)来处理数据的接收和发送,以便于处理其他任务而不阻塞主循环。 对于不固定长度的数据接收,关键在于正确地识别数据包的边界。一种常见的方法是定义一个特定的帧结构,比如起始和结束字符,或者包含数据长度字段。在中断服务程序中,当接收到起始字符时,启动接收过程,将接收到的数据存储到缓冲区,并在检测到结束字符或读取到数据长度字段后停止接收。这样可以确保即使数据长度未知,也能完整地接收整个数据包。 接下来,我们讨论printf发送重定向。在C语言中,printf函数通常用于向标准输出(通常是控制台)打印信息。但在嵌入式系统中,没有标准输出的概念,我们可以自定义printf的输出目的地。通过重定向stdio流,我们可以让printf的数据发送到USART串口,实现远程调试信息的输出。这需要我们覆写中的相关函数,如vfprintf,然后在覆写的函数中调用USART的发送函数,将字符数据送出去。 具体实现步骤如下: 1. 定义一个全局的缓冲区,用于存放printf的输出数据。 2. 覆写vfprintf函数,使其将输出数据写入缓冲区而不是标准输出。 3. 创建一个定时器中断或者在空闲时间检查缓冲区,当缓冲区中有数据时,通过USART的发送函数将数据发送出去。 4. 需要注意的是,由于USART发送通常是异步的,因此需要处理好发送队列,避免数据丢失或乱序。 在提供的文件"USART_IT_串口printf重定向+不定长接收(003带库)"中,可能包含了实现上述功能的源代码。代码中可能包括了USART的初始化配置、中断服务程序、printf重定向的相关函数等。通过阅读和理解这些代码,你可以学习到如何在实际项目中实现类似的串口通信功能。 总结来说,实现STM32的USART串口不固定长度数据接收和printf发送重定向,需要理解USART的工作原理、中断服务程序的设计以及stdio流的重定向。这不仅能提高你的嵌入式编程技能,也为开发各种通信应用打下坚实的基础。
2024-08-20 10:44:39 4.08MB stm32
1
理论分析了温度通过热胀冷缩效应对光纤长度产生影响的机理,并在不同波长情况下通过不同长度的光纤进行了实验验证。实验结果表明:在不同波长下,当温度每变化1 ℃时每千米单模光纤长度改变量相差不大;对于不同长度的光纤,当温度每变化1 ℃时单模光纤长度改变量与光纤长度基本呈正比例关系,基本与理论分析结果一致。
2024-08-13 16:19:12 2.96MB 光纤光学 长度测量 温度效应 测量精度
1