内容概要:本文详细介绍如何使用Python实现免疫遗传算法(IGA)来求解经典的旅行商问题(TSP)。文章首先介绍了TSP问题的定义、复杂性及其在物流、路径规划等领域的广泛应用;随后讲解了遗传算法(GA)的基本原理及其在TSP中的应用,并指出其易早熟收敛的缺陷;接着引入免疫算法(IA),阐述其通过免疫记忆和调节机制增强搜索能力的优势;在此基础上,提出将两者融合的免疫遗传算法,通过接种疫苗、免疫选择、克隆变异等机制有效提升解的质量与收敛速度。文中给出了完整的Python实现步骤,包括城市数据生成、距离矩阵计算、适应度函数设计、免疫与遗传操作的具体代码,并通过可视化展示最优路径和适应度曲线,最后对结果进行分析并提出参数调优与算法改进方向。; 适合人群:具备Python编程基础、了解基本算法与数据结构的高校学生、算法爱好者及从事智能优化相关工作的研发人员;尤其适合对启发式算法、组合优化问题感兴趣的学习者。; 使用场景及目标:①掌握免疫遗传算法解决TSP问题的核心思想与实现流程;②学习如何将生物免疫机制融入传统遗传算法以克服早熟收敛问题;③通过完整代码实践理解算法各模块的设计逻辑,并可用于课程设计、科研原型开发或实际路径优化项目参考;④为进一步研究混合智能算法提供基础框架。; 阅读建议:建议读者结合代码逐段理解算法实现过程,动手运行并调试程序,尝试调整种群大小、变异率、交叉率等参数观察对结果的影响,同时可扩展疫苗策略或引入局部搜索等优化手段以加深理解。
2025-12-18 14:45:58 196KB Python 免疫遗传算法 TSP问题 组合优化
1
基于均匀设计、有限元法、人工神经网络和免疫遗传算法建立了新的岩质边坡结构面参数的反演方法.按照均匀设计要求,确定数值模拟方案;用有限元程序计算出相应的神经网络训练样本,建立边坡变形的神经网络预测模型,再利用免疫遗传算法进行反演分析,其中反演过程适应度的计算则采用已训练好的神经网络预测来替代有限元数值仿真,大大缩短了计算时间.通过实际工程的算例分析,反演结果比较理想.
2025-12-11 21:39:08 981KB 免疫遗传算法 人工神经网络
1
一个介绍遗传算法的PPT-基本遗传算法.ppt 附件是一个介绍遗传算法的ppt,我觉得还是很不错的,希望对大家特别是那些初学遗传算法的朋友有一定帮助。 基本遗传算法.ppt === 1.jpg ===== ========== 下次发帖请填写标签.请按论坛要求发帖.麻烦啦..OO. 版主按.. ============
2025-12-10 05:20:14 396KB matlab
1
《多目标快速非支配排序遗传算法优化代码》 在计算机科学和优化领域,遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传机制的全局优化技术。它通过模拟生物进化过程中的“适者生存”原理,寻找问题的最优解。而多目标优化问题则涉及多个相互冲突的目标函数,需要找到一组平衡所有目标的解决方案,即帕累托最优解。快速非支配排序遗传算法(Nondominated Sorting Genetic Algorithm II, NSGA-II)是解决这类问题的一种有效方法。 `nsga_2.m` 是NSGA-II的核心实现文件。这个算法包括种群初始化、选择、交叉和变异等基本操作。`initialize_variables.m` 文件用于生成初始种群,它包含了问题的潜在解。接着,`evaluate_objective.m` 对每个个体进行评估,计算其对应的目标函数值,这在多目标优化中至关重要。 `non_domination_sort_mod.m` 实现了非支配排序,这是NSGA-II的关键步骤。非支配排序将个体按照非支配关系分为多个层,第一层(Pareto前沿)包含那些没有被其他个体支配的个体,这些个体代表了当前的最优解集。第二层包含被第一层个体支配但不被其他层个体支配的个体,以此类推。 `genetic_operator.m` 包含了遗传操作,如选择、交叉和变异。`tournament_selection.m` 实现了锦标赛选择策略,这是一种常见的选择策略,通过随机选取若干个体进行对决,胜者进入下一代。交叉和变异操作则用于产生新的个体,保持种群的多样性。 `replace_chromosome.m` 处理种群更新,将新产生的个体替换掉旧的个体,确保种群不断进化。在NSGA-II中,种群的更新不仅要考虑适应度,还要考虑拥挤度,以平衡解的多样性和分布质量。 `objective_description_function.m` 文件可能是用于定义和描述目标函数的,这可以根据具体问题的性质来定制。目标函数反映了我们希望优化的各个方面,可以是单个或多个指标。 `说明.pdf` 文件可能提供了算法的详细描述、实现细节以及如何运行和理解代码的指南。阅读这份文档可以帮助我们更好地理解和使用这些代码。 这个压缩包提供了一个完整的NSGA-II实现,用于解决多目标优化问题。通过理解和调整这些代码,我们可以将其应用于各种实际问题,如工程设计、资源分配、投资组合优化等,以寻找多目标之间的最佳平衡。
2025-12-09 16:46:46 427KB
1
在数学建模领域,优化问题是一项关键任务,尤其是在面对复杂多目标问题时。"多目标快速非支配排序遗传算法"(Multi-Objective Fast Non-Dominated Sorting Genetic Algorithm,简称NSGA-II)是一种广泛应用的多目标优化算法,它结合了遗传算法的优势和非支配排序的概念,以有效地寻找帕累托最优解集。 遗传算法是模拟生物进化过程的一种搜索算法,通过模拟自然选择、遗传和突变等机制来探索问题空间。在多目标优化问题中,一个解决方案可能在各个目标之间存在权衡,没有全局最优解,而是存在一组非支配解,即帕累托最优解。这些解对每个目标都尽可能好,无法被其他解在所有目标上同时改进,因此非支配排序成为评估和选择种群中个体的关键步骤。 NSGA-II算法的核心步骤包括: 1. 初始化种群:随机生成初始解决方案群体,作为算法的起点。 2. 非支配排序:根据各个个体在多目标空间的位置,将种群分为多个非支配层。第一层是最优的,即没有其他个体在所有目标上都优于它,第二层是次优的,以此类推。 3. 分层拥挤度计算:对于同一层内的个体,根据它们在目标空间的分布情况,计算拥挤度,以处理 Pareto 前沿的稀疏性和多样性。 4. 选择操作:采用基于非支配层次和拥挤度的复合选择策略,确保在保留优秀解的同时保持种群多样性。 5. 变异和交叉操作:通过基因重组(交叉)和基因突变生成新的后代个体,维持种群的遗传多样性。 6. 更新种群:用新生成的后代替换旧种群的一部分,保持种群大小恒定。 7. 循环迭代:重复上述步骤,直至达到预设的迭代次数或满足其他停止条件。 NSGA-II算法的优势在于它能够同时考虑多个目标,并生成多样性的帕累托最优解集,这对于决策者在实际问题中权衡不同目标非常有用。在数模中的优化与控制方向,这种算法可以应用于如资源分配、调度问题、网络设计等多个领域,帮助找到满意的整体解决方案。 在提供的压缩包文件中,“多目标快速非支配排序遗传算法优化代码”可能是实现NSGA-II算法的一个具体程序。这个程序可能包含了算法的详细实现,包括种群初始化、非支配排序、选择、交叉、变异等核心功能,以及可能的性能优化措施。通过阅读和理解这段代码,用户可以学习如何应用NSGA-II解决实际的多目标优化问题,也可以在此基础上进行二次开发,适应特定的优化需求。
2025-12-09 16:31:11 429KB
1
针对当前创建语音识别系统时只能采用经验式或启发式方法选择声学模型拓扑结构的情形,提出了一个基于标准遗传算法的声学模型拓扑结构优化算法。与以往的类似应用相比,该算法具备同时优化模型状态数与各状态高斯核数和摒弃高斯核均匀分配的特点。连续数字串TIDigits语料上的以贝叶斯信息准则为目标函数的实验表明,与传统方法创建的基线系统相比,模型拓扑优化的系统能够以较低的复杂度获得较高的识别率,这说明该算法是声学模型拓扑结构优化的有效工具。
2025-11-27 19:33:09 1.14MB 工程技术 论文
1
基于多需求与冷链物流的车辆路径优化算法研究:融合遗传算法与多种智能优化技术,路径规划vrp,遗传算法车辆路径优化vrptw,MATLAB,带时间窗及其他各类需求均可,基于车辆的带时间窗的车辆路径优化VRPTW问题。 冷链物流车辆路径优化,考虑充电桩车辆路径evrp,多配送中心车辆路径优化,冷链物流车辆路径。 改进遗传算法车辆路径优化,蚁群算法粒子群算法,节约算法,模拟 火算法车辆路径优化。 完整代码注释 ,关键词: 1. 路径规划VRP 2. 遗传算法 3. 车辆路径优化VRPTW 4. MATLAB 5. 带时间窗 6. 各类需求 7. 冷链物流 8. 充电桩车辆路径evrp 9. 多配送中心 10. 改进遗传算法 11. 蚁群算法 12. 粒子群算法 13. 节约算法 14. 模拟退火算法 15. 完整代码注释 用分号分隔每个关键词为:路径规划VRP;遗传算法;车辆路径优化VRPTW;MATLAB;带时间窗;各类需求;冷链物流;充电桩车辆路径evrp;多配送中心;改进遗传算法;蚁群算法;粒子群算法;节约算法;模拟退火算法;完整代码注释;,基于多需求与冷链物流的车辆路径优化算法研究
2025-11-16 10:22:54 1.17MB csrf
1
内容概要:本文介绍了在MATLAB环境下实现基于遗传算法(GA)与随机森林(RF)相结合的光伏功率预测项目,旨在通过GA优化RF的关键超参数(如树数量、最小叶节点样本数、特征采样数等),提升预测精度与稳定性。项目采用时间感知的滚动交叉验证作为适应度评估方式,结合RMSE、MAPE及峰值误差惩罚构建业务导向的目标函数,有效应对天气突变、数据缺失等实际挑战。系统架构涵盖数据层、模型层、搜索层、评估层和服务层,支持多源数据融合(如SCADA、气象数据、卫星云图等),输出不仅包括点预测,还提供区间预测与特征重要性分析,增强模型可解释性与业务实用性。; 适合人群:具备一定MATLAB编程基础,从事新能源发电预测、电力系统调度、智能运维等相关领域的科研人员与工程技术人员,尤其适合工作1-3年希望深入理解机器学习在能源场景中应用的研发人员。; 使用场景及目标:①解决光伏功率预测中因天气突变导致的预测不稳定问题;②实现自动化超参数优化以降低人工调参成本;③构建可解释、可部署、符合电力业务需求的预测模型,服务于电网调度、电站运维与电力市场交易决策;④支持多站点批量部署与长期运维。; 阅读建议:建议结合文中提供的代码示例与模型架构图进行实践操作,重点关注适应度函数设计、时间序列交叉验证实现与并行计算配置,同时可扩展研究SHAP解释方法与模型在线更新机制。
1
FDTD(时域有限差分)仿真模型的建立及其在光子器件设计中的应用,重点探讨了逆向设计中的多种算法,如二进制算法、遗传算法、粒子群算法和梯度算法。首先,文章解释了FDTD的基本原理,包括仿真区域和边界条件的确定、网格划分、初始条件设定以及麦克斯韦方程的求解步骤。接着,阐述了逆向设计的概念及其在光子器件优化中的重要性,并具体介绍了四种算法的工作机制。最后,展示了这些技术和算法在实际光子器件(如分束器、波分复用器、二极管、模式滤波器、模分复用器等)的设计与仿真中的应用实例。 适合人群:从事光子学研究的技术人员、高校相关专业师生、对光子器件设计感兴趣的科研工作者。 使用场景及目标:适用于希望深入了解FDTD仿真技术及逆向设计算法的研究人员,旨在提高光子器件的设计效率和性能优化能力。 其他说明:文中不仅提供了理论背景,还结合了具体的案例分析,有助于读者更好地理解和掌握相关技术的实际应用。
2025-11-01 21:30:11 254KB FDTD 遗传算法 粒子群算法 逆向设计
1
交叉概率 pc和变异概率 pm在整个进化进程中保持不变,是导致算法性能下降的重要原因。 为了提高算法的性能,文章提出了自适应交叉概率公式和自适应变异概率公式,并在非线性排序选择情 况下,证明了所提出的自适应交叉和自适应变异概率公式是收敛到全局最优解的。
2025-10-30 14:29:13 533KB 自然科学 论文
1