【恒流源电路详解】 恒流源是一种能够保持输出电流恒定,不随负载或电源电压变化而改变的电路。在电子设计中,恒流源广泛应用于LED驱动、传感器供电、精密电流基准等方面,其稳定性和精度对于系统性能至关重要。本篇文章将详细探讨一种由运算放大器(运放)和MOSFET组成的恒流源电路,以及其工作原理和应用。 一、电路组成 运放+MOSFET的恒流源电路通常由以下几个部分构成: 1. 运算放大器:运放作为反馈控制的核心元件,能够比较输入电压并调整输出,以实现电流的精确控制。 2. MOSFET:MOSFET(金属氧化物半导体场效应晶体管)用作电流控制开关,其栅极电压决定了漏极电流的大小。 3. 反馈电阻:连接在MOSFET的源极和运放的反相输入端,用于将输出电流转换为电压,提供反馈信号。 4. 参考电压源:提供一个稳定的电压,与反馈电压进行比较,决定MOSFET的栅极电压。 二、工作原理 1. 当MOSFET的栅极电压高于源极电压时,MOSFET导通,漏极电流ID与VGS(栅极-源极电压)和沟道电阻RDS(on)成正比,即ID = K * (VGS - VTH) * sqrt(VDS),其中K是沟道常数,VTH是阈值电压,VDS是漏极-源极电压。 2. 运放工作在负反馈状态,其反相输入端(通过反馈电阻)的电压与同相输入端(参考电压源)的电压保持一致。因此,当漏极电流增大时,反馈电压也增大,运放将降低其输出电压,减小MOSFET的栅极电压,从而限制漏极电流的增加。 3. 相反,如果漏极电流减小,运放的输出电压上升,增加MOSFET的栅极电压,漏极电流也随之增加,形成闭环控制,确保电流恒定。 三、设计要点 1. 选择合适的运放运放应具有低输入偏置电流、高开环增益和足够高的带宽,以确保电流控制的精度和快速响应。 2. MOSFET的选择:MOSFET应具有低阈值电压和低RDS(on),以减少静态功耗和提高电流控制的线性度。 3. 反馈电阻的计算:反馈电阻值Rf需根据所需恒定电流Iset和参考电压Vref来确定,Rf = Vref / Iset。 4. 静态偏置:通常需要一个偏置电阻Rbias来设置MOSFET的初始栅极电压,确保在电源启动时MOSFET处于导通状态。 四、应用实例 这种恒流源电路在LED驱动电路中非常常见,因为LED的亮度与其电流直接相关。通过调整电路参数,可以确保每个LED都获得恒定的电流,从而保持亮度一致。此外,它还可用于精密测量设备中的电流源,提供稳定可靠的电流基准。 总结,运放+MOSFET的恒流源电路通过负反馈机制实现了电流的精确控制。理解其工作原理和设计要点对于电子工程师来说至关重要,可以为各种应用场景提供稳定、可调节的电流源。深入研究"Voltage-to-current (V-I) converter circuit with MOSFET.pdf"文档,将有助于进一步掌握此类电路的设计与优化。
2024-10-17 15:18:39 445KB
1
Howland电流泵是一种由麻省理工学院的Brad Howland发明的运算放大器(OPA)电流源,它在电路设计中具有重要的应用。这个电路利用运放的特性,能够提供一个独立于负载电阻的恒定电流输出。对于不熟悉电子工程的人来说,理解这种电流源可能有些困难,但通过逐步解析其基本原理,我们可以更好地了解它的工作机制。 我们从简单的电流镜电路开始。电流镜是一种常见的电路结构,它可以复制电流,其中一个支路的电流与另一个支路的电流保持一致。在运放电流镜中,运放的反相输入(-)和同相输入(+)之间的电压相等,即v-= v+。在这种情况下,运放的输出电流iL并不依赖于负载电阻RL或输入电压vL,而是由Rf+上的电压决定。Rf+的电压必须与Rf-的电压相同,且不受地电位影响。 接下来,我们将电流镜转变为Howland电流泵,通过将Rf+连接到不同的电压点,如vR。在vR=0V时,电路成为一个单运放差分放大器。当vR=VOS(恒定偏置电压)时,输出电压vO会增加,但为了保持v-=v+,v+/vO必须小于1,以防止运放输出达到饱和。为了实现这一目标,Rf+被分解为Rf-Rs和Rs两个串联电阻,这样可以引入正反馈,调整输出电压以保持输入平衡。 在这个电路中,Rs上的电流iL与Rf-Rs上的电流iB分离,由一个电压增益为a的缓冲器实现。运放的输入电压vL可通过以下公式计算:vL = (iI * Rs) / (1 + a),其中iI是输入电流,a是缓冲器的增益。最终的输出电流iL与vL无关,仅与输入电压vI有关,这是因为正反馈环路会抵消vL的变化。 当负载电阻RL增大导致vL增加时,正反馈环路会放大vL的增量,通过运放的同相比例增益Av+进行补偿,使vO相应增加,从而保持iL不变。这种自举提升的行为确保了vS(Rs两端的电压)保持稳定,进而维持iS(流经Rs的电流)的恒定,即使vL变化,iL也不会受到影响。 在最简单的形式中,Howland电流源可以没有×1缓冲器,但Rf+仍需分为Rf-Rs和Rs,以满足电流源条件。此时,iL和iB共同流经Rs,但仍然可以通过电路分析技术将其分开。反馈路径的总串联电阻Rf保持不变,而Rf/Ri的比例在正反馈和负反馈路径中必须相等,以确保电压自举效应使得iL独立于vL。 Howland电流泵是一个巧妙的电路设计,它利用运放的特性创建了一个能够提供恒定电流的源,该电流独立于负载电压的变化。通过理解其内部的工作原理,包括反馈机制、电阻分压和电压自举,我们可以更好地应用这个电路于各种电源设计和技术应用中。
2024-08-14 18:41:46 154KB 电源设计 运放电流源 Howland
1
《Op Amps for Everyone》是运放领域的经典之作,作者Ron Mancini和Bob Carter以其深入浅出的方式,为读者提供了全面而实用的运算放大器(运放)知识。运放是电子工程中的核心组件,广泛应用于各种嵌入式系统中,因此这本书对于理解和应用运放至关重要。 该书第五版在前四版的基础上进行了更新和扩展,涵盖了运放的基本概念、电路设计、应用实例等多个方面。以下是其中的一些关键知识点: 1. 运放基础:书中首先介绍了运放的基本结构,包括差分输入、高输入阻抗、低输出阻抗等特点,以及理想运放的概念。这些基础知识为理解运放的工作原理奠定了基础。 2. 运放电路:讲解了基本的运算放大器电路,如电压跟随器、反相放大器、同相放大器、加法器、减法器等。这些电路是许多复杂电子系统设计的基础。 3. 非线性应用:涵盖了比较器、滞回比较器、窗口比较器等非线性应用,这些都是运放在数据检测和信号处理中的常见角色。 4. 稳压电源:书中也涉及了运放如何在电源设计中发挥作用,例如电压基准源、电流源等,这对于理解和设计嵌入式系统的电源部分非常重要。 5. 模拟滤波器:介绍各种类型的模拟滤波器,如低通、高通、带通、带阻滤波器,以及它们的实现方法,这对于信号处理和噪声抑制至关重要。 6. 差分和共模信号:详细解释了差分信号和共模信号的概念,以及如何通过运放实现差分放大,这对于减少噪声和提高信号质量具有重要意义。 7. 开环增益与闭环增益:讨论了运放的开环增益和闭环增益,以及负反馈在稳定电路性能中的作用。 8. 输入失调电压和电流:讲述了输入失调对运放性能的影响,以及如何通过补偿技术进行校正。 9. 高速和宽带运放:针对高速和宽频域应用,探讨了高速运放的设计挑战和特性。 10. 实际应用案例:书中包含大量实际应用示例,如音频放大、传感器接口、ADC和DAC预处理等,帮助读者将理论知识应用于实践。 《Op Amps for Everyone》第五版是一本全面而实用的运放教程,适合电子工程初学者和经验丰富的工程师参考。通过阅读此书,读者可以深入理解运放的运作机制,提升在嵌入式系统设计中的能力。
2024-07-03 18:23:14 8.26MB
1
文章目录 画运放比例电路 10.1 同相放大/反向放大 10.2 集成运放参数理解,包括哪几部分,压摆率呢? 10.3 轨到轨运放 10.4 失调电压/电流
2024-06-28 14:12:10 321KB 硬件工程师
1
北京邮电大学 22级信通院 运放音频放大电路设计及测试 含仿真电路与实测电路数据
2024-06-13 15:02:05 620KB
1
multisim 通过运放产生方波,再通过有源一介低通滤波产生三角波
2024-05-29 18:56:13 104KB multisim
另外带有仿真电路(基于Multisim14.0) 网盘链接:链接:https://pan.baidu.com/s/1iZrSsEXRFRvCyBBPuEmzjg?pwd=eor5 提取码:eor5 使用题目指定的综合测试板上的NE555芯片和一片四运放LM324芯片,设计制作一个频率可变的同时输出脉冲波、锯齿波、正弦波Ⅰ、正弦波Ⅱ的波形产生电路。给出方案设计、详细电路图和现场自测数据及波形。同时四通道输出、每通道输出脉冲波、锯齿波、正弦波Ⅰ、正弦波Ⅱ中 的一种波形,每通道输出的负载电阻均为600欧姆。 四种波形的频率关系为1:1:1:3(3次谐波);脉冲波、锯齿波、正弦波Ⅰ输出频率范围为8KHz~10KHz,输出电压幅度峰峰值为1V;正弦波Ⅱ输出频率范围为24KHz~30KHz,输出电压幅度峰峰值为9V。 参考13年全国大学生电子竞赛综合测评报告。
2024-03-12 22:14:42 3.87MB 电子仿真 波形发生器
1
从理论到晶体管级的推导,非常详细。 (1)电路分析:电路结构 ;电路描述;静态特性;频率特性;相位补偿 (2)设计指标及其概念分析:共模输入范围;输出动态范围;单位增益带宽(GBW);输入失调电压;系统失调电压 。 (3)电路设计:MOS 工作区域;过驱动电压的影响; 约束分析。 (4)spice的仿真 (5)candence的仿真 文章摘选:含有两个工艺参数 μp和 COX,而设计参数有四个,分别是 CC、W1、L1 和 VGST1,可以看到 GBW 与管子的沟道宽度和过驱动电压成正比,而与 CC 和 L 成反比。也就是说,要得到高的 GBW 就需要增大 M1 和 M2 管的过驱动电压或者减小其沟道长度,对照由式(2.12)得到的结论,可以发现,这与提高增益的要求是相互抵触的,而且管子面积的减小也会使得噪声性能变差,所以在设计电路的时候,需要根据具体应用和设计指标进行权衡(Tradeoff)。 但在实际的电路实现中,会有两个问题[4],一是由上式可知,第二极点是与负载电 容有关的,这样在负载电容未知或者运放工作过程中负载电容发生变化的情况下, 很难使得零点和第二极点精确抵消。第二,即
2024-02-24 12:13:30 1.65MB 模拟IC
1
运放设计宝典》之专题五共模反馈电路设计与仿真; 模拟集成电路的重要资料;
2023-11-15 15:52:09 1.04MB 共模反馈电路
1
运放设计宝典》之专题四 高速运放设计; 设计模拟集成电路时的重要资料;
2023-10-28 10:28:50 1.09MB 运放设计宝典 高速运放设计
1