系统辨识与自适应控制是控制理论中的两个关键领域,它们在自动化、机器人技术、航空航天、过程控制等众多IT行业中有着广泛的应用。本压缩包文件包含的资源可能是一系列关于这两个主题的编程代码实例,旨在帮助学习者理解和实践相关算法。 系统辨识是通过收集系统输入和输出数据来构建数学模型的过程,这些模型可以描述系统的动态行为。在实际应用中,系统辨识通常涉及时间序列分析、最小二乘法、状态空间模型以及参数估计等技术。通过对系统进行建模,我们可以预测系统响应、优化性能或诊断故障。例如,对于一个工业生产线,系统辨识可以帮助我们理解机器的运行特性,以便于提高生产效率或预防设备故障。 自适应控制则是控制理论的一个分支,它允许控制器根据系统的未知或变化特性自动调整其参数。在自适应控制中,关键概念包括自适应律、参数更新规则和不确定性估计。自适应控制器的设计通常包括两个部分:一是固定结构的控制器,用于处理已知的系统特性;二是自适应机制,用于处理未知或变化的部分。例如,在自动驾驶汽车中,自适应控制系统能够实时调整车辆的行驶策略以应对路面条件的变化或驾驶环境的不确定性。 这个压缩包可能包含以下内容: 1. **源代码**:可能包含用各种编程语言(如Python、Matlab、C++等)实现的系统辨识和自适应控制算法,例如最小二乘法估计、卡尔曼滤波器、自适应PID控制器等。 2. **数据集**:可能提供了实验数据或模拟数据,用于测试和验证识别算法和自适应控制器的效果。 3. **教程文档**:可能包括详细的步骤说明,解释如何运行代码、解读结果以及如何将理论知识应用于实际问题。 4. **示例问题**:可能涵盖各种工程问题,如机械臂控制、过程控制系统的稳定性分析等,以帮助学习者深入理解这两个领域的应用。 通过学习和实践这些代码,学习者不仅可以掌握系统辨识和自适应控制的基本理论,还能提升编程和解决实际问题的能力。在IT行业中,这样的技能对于从事控制系统的开发和优化工作至关重要,无论是物联网(IoT)设备、智能机器人还是复杂的自动化生产线,都需要这样的技术来确保系统的高效、稳定运行。
2024-09-30 08:52:25 1.15MB 系统辨识
1
一类输出受限非线性系统的输出反馈控制
2024-07-10 14:13:22 145KB 研究论文
1
RBF神经网络自适应控制MATLAB仿真介绍了RBF神经网络的原理和方法,列举了很多的控制例子,并且给出了详细的MATLAB程序代码,按照代码可以复现书中的仿真程序。
2024-06-28 08:46:33 96.87MB matlab 神经网络
1
针对液压支架电液控制系统存在静态软件和动态应用环境之间的矛盾问题,设计了一种液压支架电液控制系统自适应软件。介绍了BP神经网络模型以及自适应控制技术,和液压支架电液控制系统自适应软件工作原理,分析了影响液压支架自动控制的主要因素,提出了液压支架自动控制软件自适应模型,构建了液压支架电液控制系统基于BP神经网络软件自适应模型,介绍了模型训练集样本收集、模型训练相关流程及内容。
2024-02-28 14:38:50 560KB 行业研究
1
在本文中,提出了一种新颖的自适应鲁棒方法来对一类受执行器未建模动力学影响的柔性臂机器人进行建模和控制。 它显示了如何利用动态系统测量的实时信号来提高柔性机器人数学模型的准确性。 鉴于机器人手臂的弹性,柔性机械手具有被动和主动自由度。 非线性鲁棒控制器设计用于主动自由度,以使机器人在执行器存在未建模动力学的情况下能够遵循所需轨迹。 此外,表明在某些可行的条件下,为被动自由度设计了另一个非线性鲁棒控制器。 此外,为了将系统响应用于模型提取,提出了两个辅助信号,以提供足够的信息来从数字上提高系统动力学的准确性。 另外,在每种情况下都提出了两种自适应定律来更新两个引入的辅助信号。 结果,在主动自由度收敛到它们的期望轨迹之后,控制器控制被动自由度。 同时,从系统收集的用于更新辅助信号的信息提高了模型的准确性。 最后,给出了仿真结果以验证所提出控制器的性能。
2023-12-14 21:02:05 458KB 自适应控制 鲁棒控制 震动控制
1
为了降低滤波参数对单相有源滤波器(APF)的补偿效果的影响,提出了基于超稳定理论的模型跟随控制策略。首先对非线性APF模型线性化,并把线性化后的模型等价由前向回路和反馈回路构成,根据超稳定性理论,反馈回路满足波波夫积分不等式,前向回路的传递函数严格正实,由此设计自适应模型跟随控制律。仿真结果表明所提控制策略较PI控制的补偿效果更好,不仅可以有效消除电网谐波电流,而且具有更强的参数抑制能力。
1
空冷型质子交换膜燃料电池(PEMFC)发电系统的输出性能受工作温度、气体流速、尾气排放间隔等操作参数的影响,其中工作温度是影响输出性能的关键因素。针对空冷型PEMFC发电系统温度控制所具有的非线性、时滞、慢时变等复杂特性,提出基于灰色预测的无模型自适应控制方法实现实时最优温度控制。该方法将灰色预测的结果代替发电系统当前工作温度测量值。实验结果表明:所提方法能够在不同负载条件下实现对发电系统最优温度进行实时跟踪。与增量式PID控制相比,所提方法有效减小了系统的超调,使发电系统输出功率更平稳,有利于发电系统的长期稳定运行,延长电堆的使用寿命。且所提方法仅根据PEMFC输入输出数据在线对控制器进行调整,对PEMFC参数不敏感,可应用于类似空冷型PEMFC发电系统。
1

提出一种利用粒子群优化算法进行在线寻优的自适应控制算法, 该方法可抑制极限环的振荡幅值. 应用极
值搜索控制的思想, 在线测量极限环的振荡幅度, 并将其作为优化目标, 利用粒子群优化算法寻找最优控制量, 使得
极限环的振荡幅值最小. 针对粒子群优化和极限环控制的特点, 提出一种加快收敛的算法. 数值实验表明, 提出的算
法不仅与传统基于摄动方法的极值搜索控制性能相当, 而且可对非凸和不光滑目标函数进行在线寻优, 鲁棒性更强.

1
倒立摆是不稳定的非最小相位系统,其H∞输出反馈缺乏鲁棒性。用带宽设计的观点分析了不稳定非最小相位对象的控制难点,指出非最小相位的控制要求系统的带宽要窄,而不稳定对象的控制则要求带宽要宽。提出用一个宽带宽的回路对不稳定动态部分进行镇定,再对只具有非最小相位的回路设计一个窄带宽的控制器。通过仿真表明,这样的设计具有良好的鲁棒性。
2023-04-27 11:21:39 237KB 自然科学 论文
1

针对一类严格反馈不确定非线性动态系统, 提出一种直接鲁棒自适应模糊控制新方案. 利用模糊系统的逼
近能力、后推设计方法和积分型李亚普诺夫函数, 依次确定各虚拟控制及模糊系统中可调参数的自适应律, 并最终确
定出控制律. 为改善控制系统的性能, 引入逼近误差的自适应补偿项. 通过李亚普诺夫方法, 证明了闭环系统是一致
终结有界的. 仿真结果表明了该方法的有效性.

1