灰狼优化算法(GWO)是目前一种比较新颖的群智能优化算法,具有收敛速度快、寻优能力强等优点。将灰狼优化算法用于求解复杂的作业车间调度问题,与布谷鸟搜索算法进行比较研究,验证了标准GWO算法求解经典作业车间调度问题的可行性和有效性。在此基础上,针对复杂作业车间调度问题难以求解的特点,对标准GWO算法进行改进,通过进化种群动态、反向学习初始化种群以及最优个体变异三个方面的改进操作,测试结果表明,改进后的混合灰狼优化算法能够有效跳出局部最优值,找到更好的解,并且结果鲁棒性更强。
1
python实现基于改进的差分进化算法求解柔性作业车间调度问题源码+项目说明.7z 问题规模以(工件J*工序P*机器M)表示,例如J20P10M10表示共有20个工件,每个工件有10个工序,总共有10个加工机器可供选择。data文件夹中的文件表示程序所用的数据,其中data_first文件的问题规模是J10P5M6,data_second文件的问题规模是J20P10M10,data_third文件的问题规模是J20P20M15。对于其中数据的解释:横向表示工序,纵向表示机器,每个数值表示机器加工工序的耗时,工序和机器都是按顺序排列的。以data_first.txt文件为例,前五行分别表示第一个工件的5个工序分别在6台机器上加工的时间,第5-10行表示第二个工件的5个工序分别在6台机器上加工的时间,以此类推。 关于编码,本项目采用的是同类问题常用的编码方式,参考论文“基于改进遗传算法的柔性作业车间调度问题研究”,与该论文所述的编码方式不同的是,本项目的编码中第一段为工序编码,第二段为机器编码。
【优化调度-车间调度】基于遗传算法求解车间调度问题matlab源码2.zip
2022-12-08 09:37:02 2.03MB
1
【优化调度】基于鸟群算法求解车间调度问题Matlab源码.zip
2022-11-29 14:34:40 1.07MB
1
原始论文:CARLIER J, NERON E. An Exact Method for Solving the Multi-Processor Flow-Shop[J]. RAIRO - Operations Research, 2000, 34(1):1-25. 混合流水车间调度标准算例
2022-11-24 19:22:16 19KB HFSP 车间调度 算例
1
框架:pytorch/python 3.7 调度问题为:作业车间调度(JSP) 算法:Actor critic
在原来ga基础上改变适应度函数解决实际大规模交期问题,并且有交期惩罚函数可以修改你需要的目标值
2022-10-18 19:19:09 715KB GA FJSP 车间调度
1
网上传的好多代码都是删去几行的不能运行(鄙视),我改全以后发上来了(保证可用),希望对大家有用。
2022-10-10 20:36:51 4KB 遗传算法 车间调度 甘特图
1
在不确定的环境中灵活的车间调度在现实世界的制造系统中起着重要的作用。 为了捕捉柔性作业车间调度的不确定性和多目标性质,构建了多目标随机柔性作业车间调度问题(MOSFJSSP)的数学模型,该模型包含制造时间跨度,最大机器工作量和鲁棒性三个目标。在各种实际约束下,同时考虑不确定性。 基于统计工具定义了两个基于方案的新的鲁棒性度量。 为了适当地解决MOSFJSSP问题,开发了一种基于分解的改进多目标进化算法(m-MOEA / D)进行鲁棒调度。 我们方法的新颖之处在于,它采用了一种新的子问题更新方法,该方法利用了全球信息,允许保存在档案中的精英们参与子代的产生,采用子问题选择和中止策略,将更多的计算工作集中在有前途的子问题上,并结合了特定问题的遗传算子进行变异。 在18个问题实例上的广泛实验结果,包括8个总柔性实例和10个局部柔性实例,表明这两种新的鲁棒性度量比现有的基于情景的度量更为有效,可以提高进度对不确定性的鲁棒性并保持被破坏目标的较小方差价值观。 与最新的多目标优化进化算法(MOEA)相比,我们提出的基于m-MOEA / D的鲁棒调度方法可实现更好的收敛性能。 还分析了三个目标之间的不同权衡。
2022-08-02 15:48:43 688KB Metaheuristics; Robust scheduling; Multiobjective
1
遗传算法在流水车间调度问题中的研究与应用.pdf
2022-07-12 09:12:02 2.71MB 文档资料