matlab实现基于贝叶斯优化的LSTM预测
2024-11-13 21:59:44 19KB matlab lstm
1
资源描述 内容概要 本资源提供了基于LightGBM模型的贝叶斯优化过程的代码实现。通过使用贝叶斯优化算法,本代码可以高效地调整LightGBM模型的超参数,以达到优化模型性能的目的。同时,代码中还集成了k折交叉验证机制,以更准确地评估模型性能,并减少过拟合的风险。 适用人群 机器学习爱好者与从业者 数据科学家 数据分析师 对LightGBM模型和贝叶斯优化算法感兴趣的研究者 使用场景及目标 当需要使用LightGBM模型解决分类或回归问题时,可以使用本资源中的代码进行模型超参数的优化。 希望通过自动化手段调整模型参数,以提高模型预测精度或降低计算成本的场景。 在模型开发过程中,需要快速找到最优超参数组合,以加快模型开发进度。 其他说明 代码使用了Python编程语言,并依赖于LightGBM、Scikit-learn等机器学习库。 代码中提供了详细的注释和说明,方便用户理解和使用。 用户可以根据自身需求,修改代码中的参数和配置,以适应不同的应用场景。
2024-08-08 15:38:49 6KB 机器学习
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-05-23 13:00:58 7.58MB matlab
1
基于贝叶斯优化长短期记忆网络(bayes-LSTM)的时间序列预测,matlab代码,要求2019及以上版本。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-02-21 11:41:42 24KB 网络 网络 matlab lstm
1
公共贝叶斯优化库(COMBO) 贝叶斯优化已被证明是加速科学发现的有效工具。 但是,标准实施方式(例如scikit-learn)只能容纳少量的培训数据。 COMBO具有高效的协议,因此具有很高的可扩展性,该协议采用了Thompson采样,随机特征图,一排Cholesky更新和自动超参数调整。 技术功能在进行了描述。 所需的包 的Python 2.7.x numpy的> = 1.10 scipy> = 0.16 Cython> = 0.22.1 mpi4py> = 2.0(可选) 安装 1. Download or clone the github repository, e.g. > git clone https://github.com/tsudalab/combo.git 2. Run setup.py install > cd combo > python setu
2023-06-15 07:30:08 899KB Python
1
贝叶斯先知 先知温度模型的贝叶斯优化,具有每日和每年的季节性以及额外的回归系数 如果您喜欢BayesianProphet,请给它加星号,或拨叉并作出贡献! 先知分解显示了趋势以及英国剑桥温度观测的年度和每日季节性: 安装/使用 必需的: 最新版本的 包 程序包 包 要安装python软件包: pip install -r requirements.txt 安装以上依赖项后, 克隆存储库并在Jupyter的本地安装中打开笔记本,或 远程尝试笔记本 -可编辑 -可编辑 在上 在查看 细节 有关数据(包括清洁),基线模型,每日和每年的季节性描述以及R先知模型的详细说明,请参阅我的时间序列和R资料库中有关Cambridge UK温度预测的其他模型。 假设和限制已包含在上述存储库中,此处不再赘述。 我的剑桥大学计算机实验室气象站R Shiny存储库中提供了其他探索性数据分析。 我的主
2023-03-29 20:41:56 3.39MB python time-series jupyter temperature
1
mlrMBO:R中的贝叶斯优化和基于模型的优化的工具箱
1
基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据) 输入多个特征,分四类。 基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据) 基于BO-GRU贝叶斯优化门控循环单元的数据分类预测(Matlab完整程序和数据)
时序预测_Bayes贝叶斯推理_优化LSTM预测Matlab实现(含完整源码+数据) Matlab实现了随机波动率模型(包括LSTM-SV, SV等)的贝叶斯推理、预测和模拟。
2022-12-02 09:29:39 407KB LSTM 贝叶斯 Bayes(贝叶斯)优化LSTM
这是一个简单的应用LSTM在Pytorch文本分类任务上,使用贝叶斯优化超参数调优。 【配置】 可以在src/constants.py文件中设置各种超参数。 每个变量的说明如下。 注意,对于贝叶斯优化,要调优的超参数应该以元组的形式传递。 你可以将参数设置为一个元组或一个特定的值。 前者意味着该论证将被纳入贝叶斯优化的主题,而后者意味着它不应被纳入。 【操作运行】 参考代码中的项目说明文件,按照说明一步步操作