1 设计任务与要求 1利用所学《通信原理》的基本知识,设计一个2ASK数字调制器。 完成对2ASK的调制与解调仿真电路设计,并对仿真结果进行分析。 2理解2ASK信号的产生,掌握2ASK信号的调制原理和实现方法并画出实现框图。 2 方案设计与论证
2025-01-02 23:07:00 171KB 2ASK 数字调制 解调系统
1
集电极调幅电路&模拟乘法器实现DSB调制仿真电路 1、掌握晶体管集电极调幅和模拟乘法器调幅的工作原理和工程分析方法。 2、掌握调幅波与调制信号、载波信号的关系。 3、掌握调幅系数测量与计算方法。 4、通过实验对比AM波与DSB信号的异同点。
2024-12-29 20:28:46 1.04MB Multisim 高频电子线路
1
### 声光调制器的原理与分析 #### 一、声光调制器概述 声光调制器是一种利用声光效应来控制激光束的频率、方向和强度的装置。声光效应指的是光波在介质中传播时,会受到超声波场的影响而发生衍射或散射的现象。这一效应最早在20世纪30年代开始被研究,并随着激光技术的发展得到了广泛应用。声光调制器因其独特的性能优势,在激光技术、光信号处理以及集成光通信技术等领域发挥着重要作用。 #### 二、声光调制器的工作原理 ##### 2.1 弹光效应 - **定义**:当超声波通过均匀介质时,介质会发生形变,导致分子间相互作用力发生变化,进而引起介质内部密度的周期性变化。这种由外力作用引起折射率变化的现象被称为弹光效应。 - **表现**:密度高的区域折射率高,密度低的区域折射率低,形成了周期性的折射率变化。 ##### 2.2 超声光栅 - **概念**:当声波通过介质传播时,会在介质中产生周期性的相位变化,这些变化相当于一个“相位光栅”。 - **类型**: - **行波**:行波形成的超声光栅在空间中是移动的。 - **驻波**:驻波形成的超声光栅是静止的,由入射波与反射波叠加而成。 ##### 2.3 声光效应 - **定义**:声光效应是指光波在介质中传播时,受到超声波场的影响而发生的衍射或散射现象。 - **原理**:超声波在介质中传播时会引起介质折射率的周期性变化,从而对通过该介质的光波产生调制作用。 #### 三、声光调制器的结构与实验观察 ##### 3.1 实验仪器与装置 声光调制实验通常涉及以下组件: - **半导体激光器**:提供稳定的光源。 - **声光晶体盒**:包含声光晶体,用于实现声光效应。 - **小孔光阑**:用于筛选特定的衍射级次。 - **光电探测器**:检测经过声光调制后的光信号。 ##### 3.2 实验原理 - **行波情况**:声行波在介质中传播时,会形成疏密相间的结构,即行波形式的光栅。这会导致光波的折射率呈现周期性变化。 - **驻波情况**:声驻波在介质中形成时,会在波腹处产生交替出现和消失的折射率变化,频率为驻波周期的二倍。 ##### 3.3 观察与分析 - **布拉格声光衍射**:当声光晶体中的光栅常数与入射光波长匹配时,会出现布拉格声光衍射现象。 - **拉曼—奈斯声光衍射**:不同于布拉格衍射,拉曼—奈斯衍射发生在光栅常数与光波长不完全匹配的情况下。 #### 四、声光调制器的应用与前景 声光调制器由于其诸多优点,如输入电压低、驱动功率小、温度稳定性好、能承受较大光功率、光学系统简单、响应时间快等特点,在多个领域展现出广阔的应用前景: - **激光技术**:用于激光频率的精确控制。 - **光信号处理**:在光通信系统中用作高速光开关或可调谐滤波器。 - **集成光通信技术**:作为高性能的光子集成电路元件。 随着新材料的不断开发和技术的进步,声光调制器的应用范围将进一步扩大,满足工业、科研和军事等不同领域的需求。未来,声光调制器有望在更广泛的场景中发挥关键作用,推动相关技术的发展。
2024-10-22 16:20:37 1.87MB 声光调制器
1
matlab simulink 开环控制的SVPWM调制的三相半桥逆变器。 自己搭建的SVPWM调试模块,运行正常。开关频率等参数放在model properties-callback-initFcn中。
2024-09-16 17:44:26 43KB simulink SVPWM 三相逆变器 matlab
1
AM信号调制,仿真调制信号,载波信号,DSB调制信号
2024-08-18 17:41:36 345B 信号调制 AM调制 matlab仿真
1
QPSK(Quadrature Phase Shift Keying,正交相移键控)是一种常见的数字调制方式,它在单个载波上同时传输两路独立的数据流,通过改变信号的相位来携带信息。在无线通信、数字电视广播以及卫星通信等领域广泛应用。MATLAB作为一个强大的数学和信号处理工具,是进行QPSK调制与解调仿真的理想选择。 在MATLAB中,QPSK调制的基本步骤包括: 1. **生成基带信号**:我们需要生成二进制数据序列,通常是由随机数生成器产生。这些二进制数据将决定信号的相位状态,0代表0°或180°,1代表90°或270°。 2. **符号映射**:二进制序列通过 Gray 编码映射到四个相位点,以减少因相邻相位点相差过大而引起的错误率。 3. **调制过程**:将二进制序列转换为复数符号,每个符号由幅度为1的实部和虚部组成,相位对应于上述映射后的角度。 4. **加噪声**:为了模拟真实环境中的信道条件,通常会在信号中加入高斯白噪声,这可以通过使用MATLAB的`awgn`函数实现。 5. **滤波**:使用低通滤波器平滑信号并抑制带外辐射,通常选用匹配滤波器或矩形窗函数。 在解调部分,主要涉及以下步骤: 1. **接收与预处理**:接收端接收到的信号先进行预处理,可能包括均衡化和降噪等步骤。 2. **相位恢复**:由于信道的影响,接收信号的相位可能有所偏移,需要通过环路滤波器或者更复杂的算法来恢复原始相位。 3. **符号检测**:根据接收的复数信号,计算其相位并映射回二进制序列。通常采用星座图或判决门限方法。 4. **解码**:将检测出的二进制序列按照原始编码规则解码,恢复出原始信息。 在提供的文件中,"untitled6.slx"和"untitled5.slx"可能是MATLAB Simulink模型,它们可能包含了完整的QPSK调制和解调流程。"QPSK调制调制和解调实验.doc"可能是实验指导文档,详细解释了仿真模型的构建和运行步骤,以及可能的结果分析。 通过这样的仿真,我们可以观察误码率(BER)随信噪比(SNR)变化的曲线,理解QPSK调制在不同信道条件下的性能。此外,还可以对不同滤波器设计、噪声模型等参数进行调整,研究其对系统性能的影响。这种仿真对于理解和优化通信系统的设计至关重要。
2024-08-15 09:34:17 16.03MB QPSK matlab
1
标题中的"CPM调制解调的MATLAB程序-4cpm 星座图,cpm 解调 连续相位调制(CPM),维特比译码,整个调制解调系统.zip"指的是一个使用MATLAB编写的连续相位调制(Continuous Phase Modulation,CPM)的调制与解调系统,其中包含了4cpm的星座图,并且应用了维特比(Viterbi)译码算法。这个压缩包文件可能是为了教学或者研究目的而提供的,以便用户了解和实践CPM调制技术及其相关的解调方法。 CPM是一种常见的数字调制方式,它通过改变载波相位来传输信息。在4cpm中,"4"代表每个数据符号有4种不同的相位状态,这通常意味着可以同时传输2位信息(因为2的对数是4)。星座图是一种视觉工具,用于表示这些相位状态,每个点在图上对应一种特定的相位,便于理解和分析调制过程。 MATLAB是一个强大的数学和工程计算环境,非常适合实现通信系统的模拟和分析。在这个项目中,956149.m可能是主程序文件,负责执行CPM的调制和解调过程。文件"A"可能包含辅助函数或者配置参数,以支持主程序的运行。 维特比译码是卷积编码的一种高效解码算法,用于纠正传输过程中引入的错误。在CPM系统中,由于相位的连续性,噪声和干扰可能导致相位漂移,从而影响解调的准确性。维特比译码器能够利用前向错误校正能力,根据概率最大的路径恢复原始信息序列,显著提高系统的误码率性能。 这个MATLAB程序提供了一个完整的CPM调制解调流程,包括调制、信道模拟(通常包含AWGN或衰落信道)、解调以及维特比译码。这为学习者提供了实践通信系统理论,尤其是连续相位调制和错误校正技术的平台。用户可以修改参数,如调制指数、信噪比等,来观察它们如何影响系统的性能。通过这样的实践,可以深入理解CPM的工作原理和维特比译码的效率。
2024-07-18 11:29:47 2KB
1
"通信课程设计AM和OOK的调制与解调电路设计" 本文主要介绍了通信课程设计中的调制和解调电路设计,特别是AM(Amplitude Modulation,振幅调制)和OOK(On-Off Keying,开关键调制)的设计和仿真。文章首先介绍了传统的通信理解,即信息的传输,信息的传输离不开它的传输工具,通信系统应运而生。随后,文章讨论了调制的重要性,调制可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号。 在设计和仿真中,文章使用了 SystemView 软件,该软件是一种基于PC机Windows平台的动态系统仿真软件,主要用于电路与通信系统的设计、仿真、能满足从信号处理、滤波器设计,到复杂的通信系统等要求。通过使用 SystemView 软件,文章设计了AM和OOK的调制和解调电路,并通过分析其输人输出波形验证所设计电路的正确性。 文章还讨论了调制的分类,包括模拟调制和数字调制。模拟调制常用的方法有AM调制、DSB调制、SSB调制等,而数字调制常用的方法有BFSK调制等。调制方式往往决定着一个通信系统的性能。 本文提供了通信课程设计中的调制和解调电路设计的详细介绍,涵盖了AM和OOK的设计和仿真,以及SystemView软件在设计和仿真中的应用。该文对通信系统设计和仿真具有重要的参考价值。 知识点: 1. 通信课程设计的目的:了解信息的传输和通信系统的设计。 2. 调制的重要性:调制可以进行频谱搬移,把调制信号的频谱搬移到所希望的位置上,从而将调制信号转换成适合于信道传输或便于信道多路复用的已调信号。 3. SystemView软件的应用:SystemView是一种基于PC机Windows平台的动态系统仿真软件,主要用于电路与通信系统的设计、仿真。 4. 调制的分类:模拟调制和数字调制,包括AM调制、DSB调制、SSB调制、BFSK调制等。 5. AM和OOK的设计和仿真:使用SystemView软件设计和仿真AM和OOK的调制和解调电路,并通过分析其输人输出波形验证所设计电路的正确性。
2024-07-08 15:46:35 502KB
1
波长调制光谱用于提高光子计数测量的信噪比,董双丽,肖连团,光子计数的Poisson统计特性导致光子计数的散粒噪声为 (N 为平均光子数)。本文研究利用经过波长调制的连续激光通过声光调制器的通�
2024-07-04 10:32:40 490KB 首发论文
1
最近已经注意到,来自一些银河脉冲星和超新星残骸的伽马射线的费米-拉特数据揭示了光谱调制,这可能是由传统的ALP耦合到光子中的ALP引起的光子到ALP(轴状粒子)的转换所解释的。 银河磁场的存在。 但是,相应的ALP质量和耦合受到来自CAST,SN1987A和其他伽马射线观测的观测条件的严重限制。 以此为动机,我们研究了另一种可能性,即当假定非零背景暗光子规范场时,这些光谱调制可以通过涉及普通光子和无质量暗光子的其他类型的ALP耦合来解释。 我们发现,我们的方案导致了光子,ALP和暗光子之间的振荡,这可以解释银河脉冲星或超新星残余物的伽马射线光谱调制,同时满足已知的观测约束。
2024-07-03 23:43:48 1.84MB Open Access
1