在已有 Pagerank算法构建的微博用户影响力评估模型中,存在用户自身属性信息欠缺以及在用户不活跃期间其影响力被误判下降的问题。为此,综合考虑用户自身的属性,基于用户的活跃度、认证信息及博文质量来确定其自身的基本影响力,通过引入用户博文的传播率挖掘用户的潜在影响力,结合用户不同好友的质量,基于改进的 Pagerank算法构建微博用户影响力评估算法。实验结果表明,与改进BWPR算法相比,该算法准确率、召回率和F值分别提高13.5%、10.1%和12.3%,能准确、客观地反映微搏用户的实际影响力,可为社交网络中的意见领袖挖掘、信息传播和舆论引导等研究提供参考。
1