Emotion-Domestic国内(亚洲)表情识别数据集
2025-07-29 15:20:35 235.79MB 数据集 人脸识别 机器学习
1
内容概要:本文详细介绍了利用OpenCV的光流特性提取技术进行人脸微表情识别的工程项目。首先解释了光流的基本概念及其在OpenCV中的实现方式,接着阐述了如何从连续视频帧中计算光流,进而提取面部特征。随后讨论了基于这些特征使用机器学习或深度学习模型对微表情进行分类的方法,并提供了相关代码示例。最后提到了所使用的两个重要数据集SAMM和CAS(ME)2,它们对于训练和测试模型至关重要,但需要经过申请流程才能获取。此外还强调了遵守使用条款的重要性。 适合人群:对计算机视觉、人脸识别感兴趣的开发者和技术爱好者,尤其是那些想要深入了解光流特性和微表情识别的研究人员。 使用场景及目标:适用于希望通过实际案例掌握OpenCV光流特性提取技术和人脸微表情识别的应用场景,如安防监控、人机交互等领域。目标是让读者能够独立完成类似的项目开发。 其他说明:文中提供的代码片段可以帮助初学者更好地理解和实践相关技术,同时提醒读者注意数据集的合法获取途径。
2025-07-14 17:30:21 615KB
1
人脸面部表情识别数据集文件.zip 人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识
2025-07-10 21:54:28 849.41MB 数据集
1
# 简要介绍 Fer2013 数据集源自 Kaggle 表情识别挑战赛,该数据集包含7种不同的人脸情绪,所有图像均统一为 48×48 的像素尺寸。 # 数据规模 * 训练数据(Training):28709 张灰度图像 * 验证数据(PublicTest):3589 张灰度图 * 测试数据(PrivateTest):3589 张灰度图 # 标签介绍 数据集中的 7 种人脸情绪通过 0 - 6 的数字标签一一对应,具体如下: * 0=Angry * 1=Disgust * 2=Fear * 3=Happy * 4=Sad * 5=Surprise * 6=Neutral
2025-06-04 23:22:27 63.9MB 数据集 人脸表情识别 kaggle
1
人脸表情识别是计算机视觉领域中的一个重要课题,它涉及到深度学习、图像处理以及人工智能等多个方面的技术。本项目基于ResNet18网络模型,并结合了注意力机制(CBAM),以提升人脸识别的精度和性能。以下是相关知识点的详细介绍: 1. **ResNet18**:ResNet,全称为残差网络,由Kaiming He等人提出。ResNet18是其变体之一,拥有18层深度。这种网络结构通过引入残差块解决了深度神经网络中的梯度消失问题,使得网络可以训练更深的层次,从而提高对复杂特征的学习能力。在人脸表情识别任务中,ResNet18能够捕获面部特征,如眼睛、鼻子和嘴巴的形状变化,以判断不同的情感状态。 2. **注意力机制**:注意力机制是深度学习中的一种方法,借鉴了人类大脑在处理信息时的注意力集中过程。在本项目中,使用了Channel-wise Attention和Spatial Attention Module(简称CBAM),它结合了通道注意力和空间注意力,强化了模型对关键特征的捕捉。通道注意力关注不同特征映射之间的关系,而空间注意力则侧重于图像的不同区域。这两种注意力的结合有助于模型更精确地定位和理解面部表情的关键特征。 3. **卷积结构的改动**:原始ResNet18的卷积结构可能被作者调整,以适应CBAM模块的集成。这可能包括添加或修改卷积层、批量归一化层和激活函数等,以使网络能更好地处理注意力机制的输入和输出。 4. **GitHub**:这是一个全球知名的开源代码托管平台,用户wujie在此分享了他的代码,体现了开源精神和社区协作的重要性。通过查看该项目的源代码,其他人可以学习、改进或者应用到自己的项目中。 5. **深度学习框架**:尽管没有明确指出,但这类项目通常会使用如TensorFlow、PyTorch或Keras等深度学习框架来实现。这些框架提供了构建和训练神经网络的便利工具,简化了模型开发过程。 6. **人脸表情识别的应用**:人脸表情识别广泛应用于情感分析、人机交互、虚拟现实、心理健康评估等领域。通过准确识别个体的情绪状态,可以改善人际沟通,提高用户体验,甚至帮助诊断心理疾病。 7. **训练与评估**:在实际操作中,项目会使用标注好的人脸表情数据集进行训练,如AffectNet、FER2013等。训练过程中涉及超参数调优、模型验证和测试,以确保模型的泛化能力和准确性。 8. **模型优化**:除了基本的网络结构和注意力机制,优化还包括正则化策略(如dropout、L1/L2正则化)、学习率调度、数据增强等,以防止过拟合并提高模型的泛化能力。 通过这个项目,我们可以深入理解深度学习在人脸表情识别中的应用,以及如何通过ResNet18和注意力机制提升模型的性能。同时,也展示了开源代码对于技术分享和进步的重要性。
2025-05-02 00:08:02 73KB
1
深度学习人脸表情识别结课作业留存
2025-04-26 15:35:24 7.54MB 深度学习
1
人脸面部表情识别数据集.zip 人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸面部表情识别数据集.zip人脸
2024-09-20 14:52:47 849.41MB 数据集 深度学习 人工智能 源码
1
人脸表情数据集CK+,图片分辨率48*48,包含7类表情
2024-06-24 18:30:16 1.12MB 数据集 人脸表情数据集 表情识别
1
LiveSpeechPortrait是一种基于人脸表情识别的技术,它可以通过分析人脸的表情和动作,来判断人的情绪状态和心理特征。这项技术利用计算机视觉和机器学习的方法,对人脸图像进行处理和分析,从而准确地识别人的情感状态,包括喜怒哀乐、惊讶、厌恶等。通过对人的表情进行识别和分析,LiveSpeechPortrait可以帮助我们更好地理解人的情感反应和心理状态。 LiveSpeechPortrait的应用领域非常广泛。在情感识别方面,它可以应用于人机交互和情感计算领域,例如智能助理、虚拟现实和增强现实等技术中,通过识别用户的情绪状态,提供更加智能和个性化的服务。在用户体验研究方面,LiveSpeechPortrait可以帮助企业和研究机构了解消费者对产品和服务的真实反应,从而改进产品设计和市场营销策略。 此外,LiveSpeechPortrait还可以应用于市场调研和广告评估。通过分析人们对广告的表情反应,可以评估广告的效果和吸引力,为广告主提供更加精准的广告投放策略。在医疗领域,LiveSpeechPortrait也可以用于情绪识别和心理健康评估,帮助医生更好地了解患者的情感状态。
2024-05-29 12:12:51 65.02MB 人工智能 机器学习
1
这个基于深度学习的人脸实时表情识别项目是一个集成了TensorFlow、OpenCV和PyQt5等技术的创新性应用。通过结合这些先进的工具和框架,项目实现了对五种主要表情(愤怒、高兴、中性、悲伤、惊讶)的实时识别,为用户提供了一种全新的交互体验。 在这个项目中,TensorFlow作为深度学习框架发挥了重要作用,通过训练深度神经网络模型来识别人脸表情。OpenCV则负责处理图像数据的输入和输出,实现了对摄像头采集的实时视频流进行处理和分析。而PyQt5作为用户界面库,为项目提供了友好的图形用户界面,使用户能够方便地与系统进行交互。 通过这个项目,用户可以在实时视频流中看到自己的表情被准确地识别出来,无论是愤怒、高兴、中性、悲伤还是惊讶,系统都能给予及时的反馈。这不仅为用户提供了一种有趣的玩法,也具有一定的实用性。例如,可以将这个系统集成到智能监控系统中,实时监测员工或学生的情绪状态,及时发现异常情况。 由于该项目在Python 3.7下进行了充分测试,因此具有较高的稳定性和可靠性。同时,项目采用了模块化设计和易部署性的原则,使得用户可以轻松地部署和运行这个系统。
2024-05-12 21:00:12 13.37MB 人脸检测 表情识别
1