动态速度优化(Dynamic Speed Optimization,DSO)是一种利用先进的数据科学和机器学习技术来改进船舶运营效率的方法,旨在降低燃料消耗,从而减少运营成本和环境影响。标题和描述中的核心概念是通过建模船舶性能曲线来实现这一目标。以下是相关的IT知识点: 1. **随机森林(Random Forest)**:这是一种机器学习算法,由多个决策树组成,每个树独立地对输入数据进行分类或回归。在本案例中,随机森林可能被用来预测不同速度下船舶的燃油效率,以找出最佳运行速度。 2. **scikit-learn**:这是一个广泛使用的Python库,用于数据挖掘和数据分析,包含各种机器学习算法。在这个项目中,scikit-learn被用作实现随机森林和其他可能的回归模型的工具。 3. **燃油成本(Fuel Costs)**:在船舶行业中,燃油成本是运营成本的主要部分。通过DSO,可以找到在保持航行时间不变的情况下,减少燃油消耗的策略,从而节省成本。 4. **船舶性能曲线(Ship Performance Curves)**:这些曲线描绘了船舶在不同速度下的功率、阻力、燃油消耗等关键性能指标。构建这些曲线是DSO的关键步骤,它们基于实测数据或理论计算。 5. **船速(Ship Speed)**:船舶的运行速度直接影响其燃油效率。通过模型预测,可以在考虑风、浪、潮汐等多种因素后,找到最优速度以降低燃油消耗。 6. **回归建模(Regression Modeling)**:回归分析是统计学的一种方法,用于预测连续变量(如燃油消耗)与一个或多个自变量(如船速)的关系。在这个项目中,回归模型可能用于估计船舶在不同条件下的燃油效率。 7. **Jupyter Notebook**:这是一种交互式的工作环境,常用于数据处理、分析和可视化。在DSO项目中,可能使用Jupyter Notebook来编写和展示代码、分析结果以及创建图表。 8. **项目结构(dynamic_speed_optimization-master)**:这个目录名暗示了这是一个Git仓库的主分支,可能包含了项目的源代码、数据集、分析报告和其他相关资源。 通过以上技术,DSO项目可以实现船舶运营的精细化管理,不仅有助于降低运营成本,还能响应全球对减少温室气体排放的要求,促进航运业的可持续发展。在实际应用中,这样的模型可能需要不断更新和优化,以适应变化的环境条件和船舶状态。
2025-09-11 00:26:19 12.77MB random-forest scikit-learn
1
MCship船舶数据集是一个面向深度学习目标检测领域的大型数据集,它包含了大量的船舶图像数据,非常适合用于训练目标检测模型,尤其是基于YOLO(You Only Look Once)算法的模型。该数据集共有7996张图片,涵盖了民用船舶和军舰两种类型,每张图片都经过精心标注,包括边界框和船级标签,这些标签以xml格式保存。 在使用MCship船舶数据集进行模型训练前,需要将XML格式的标签转换为YOLO算法所需的格式。YOLO格式要求每行代表一个对象,包含类别ID和对象位置信息(中心点坐标、宽度和高度),这些数值都是相对于图像尺寸归一化后的浮点数。这一转换过程通常涉及编写相应的数据转换脚本,该脚本可以解析XML中的边界框和类别信息,并将其转换为YOLO所需的格式。 使用MCship数据集训练YOLO模型进行船舶检测和细粒度分类时,会面临几个挑战。不同类别船舶的船型非常相似,导致类间差异很小,这增加了模型的分类难度。由于视点变化、天气条件变化、光照变化、尺度变化、遮挡、背景杂乱等因素,同一类别的船舶在不同图片中可能呈现出很大的差异,这也为模型的准确检测带来挑战。 在深度学习目标检测中,YOLO算法以其高效和快速著称,适用于实时系统。YOLO系列算法包括YOLOv5、YOLOv8等多种版本,其中不同的版本有不同的特性。YOLOv5是目前应用较为广泛的一个版本,它将目标检测任务转化为一个回归问题,直接在图像上预测边界框和类别的概率。YOLOv8则是在YOLOv5的基础上进一步优化,提高了检测速度和准确率。 为了训练一个有效的模型,数据集准备是关键步骤。数据准备包括数据预处理、划分训练集和测试集、转换标注格式等。在准备过程中,还需要注意数据的多样性和平衡性,以确保模型的泛化能力。此外,为了提高模型性能,可以在训练过程中采用数据增强技术,如随机裁剪、旋转、颜色调整等,这能够帮助模型学习到更多特征,提高其对复杂场景的应对能力。 在模型训练后,还需要对模型进行评估,常用的评估指标包括准确率、召回率、mAP(mean Average Precision)等。通过这些指标可以评估模型在不同类别的船舶检测上的性能。此外,为了进一步提升模型效果,可以采用一些优化策略,如调整模型参数、使用迁移学习等。 MCship船舶数据集对于推动基于YOLO算法的目标检测技术在特定场景中的应用具有重要价值。通过利用这一数据集,研究人员和工程师可以开发出更加高效准确的船舶检测系统,为相关领域的发展做出贡献。
2025-09-10 09:26:31 5KB 计算机算法 数据集
1
本文研究的重点在于开发一款用于船舶轴系扭振测试与分析的软件,并通过实际实验对该软件进行验证。在引言部分,文章首先回顾了船舶工业迅猛发展背景下,船舶推进轴系扭转振动问题的重要性。众所周知,由于船舶轴系的复杂性,在周期性干扰力矩的作用下,若其频率与系统固有频率吻合,可能会导致严重的共振现象,从而引起主轴断裂事故。为避免这类事故,各国相关规范对船舶推进轴系的扭转振动计算提出了明确的要求。 为了响应这些要求,研究人员通过MATLAB语言开发了扭振测试计算分析软件,并利用MATLAB的图形用户界面(GUI)模块来构建交互式的操作界面。软件的开发建立在通用的船舶轴系扭转振动计算分析模型之上,该模型可以准确模拟并计算出轴系扭振的响应。 在本文中,作者详细阐述了船舶轴系扭转振动的计算和测量原理。这一过程包含对轴系模型的建立、动力学方程的构建以及相关振动参数的计算等方面。通过这一系列的计算,软件能够对船舶轴系在不同工况下的扭振特性进行全面分析。 此外,文章还报告了将软件的计算结果与实船测试数据进行对比的实验验证结果。结果证明,该软件的计算结果与实际测试结果之间吻合度高,显示出软件的计算准确性和可靠性。 软件的用户界面设计友好,易于操作,同时后处理功能完善,满足企业日常对船舶轴系扭转振动测试分析的需求。软件提供了一个直观的操作平台,使用者可以通过这个平台快速完成扭振测试分析,避免复杂的编程操作。 文中还提到了软件开发的重要贡献者和联系人信息。陆叶作为主要作者,详细介绍了其在内燃机排放及扭转振动方面的研究背景。而薛冬新副教授作为通信联系人,强调了她在内燃机排放及轴系扭转振动领域的专业知识。 从关键词来看,软件开发重点利用了MATLAB的强大数值计算能力和GUI开发工具来实现软件界面的开发。柴油机作为船舶动力的主要来源,其轴系的性能直接关系到船舶的运行安全和效率。软件的开发不仅涉及到传统的船舶轴系知识,还结合了现代计算机编程技术,使得复杂的轴系扭振分析变得简单、高效。 本文成功开发了一款基于MATLAB的船舶轴系扭振测试分析软件,并通过实验验证了其计算结果的准确性和软件的实用性。这一成果对于船舶工业领域来说具有重要的实用价值和理论意义,它为船舶轴系的扭振测试和分析提供了一个有效、便捷的工具。
2025-08-11 13:47:11 460KB 首发论文
1
NMEA模拟器 NMEA 模拟器基于 NMEA 0183 是用于船舶电子设备(例如回声测深仪、声纳、风速计、陀螺罗经、自动驾驶仪、GPS)之间通信的组合电气和数据规范。 它有 3 个主要项目:1.- 模拟器.. 2.- NMEA 解码器 3.- NMEA 编码器。
2025-08-04 18:01:51 349KB nmea
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-07-29 23:41:06 3.2MB matlab
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-07-17 14:42:06 4.62MB matlab
1
公开的船舶图像数据集,主要用于深度学习中的船舶分类任务。以下是该数据集的详细介绍:图像数量:数据集包含8932张船舶图像,其中6252张用于训练,2680张用于测试。船舶类别:数据集涵盖了五类船舶,分别是货船(Cargo)、军舰(Military)、航空母舰(Carrier)、游轮(Cruise)和油轮(Tankers)图像特点:图像拍摄于不同的方向、天气条件、拍摄距离和角度,涵盖了国际和近海港口[^3^]。图像格式包括RGB彩色图像和灰度图像,且图像像素大小不一。数据集通常被划分为训练集和测试集,比例为70:30。这种划分方式有助于模型在训练阶段学习到足够的特征,并在测试阶段评估模型的性能,该数据集主要用于船舶分类任务,通过深度学习模型对不同类型的船舶进行识别和分类。例如,有研究使用该数据集训练卷积神经网络(CNN)模型,以提高船舶分类的准确率。多样性:图像的多样性和复杂性使得该数据集能够有效模拟真实世界中的船舶识别场景。实用性:该数据集为研究人员提供了一个标准化的测试平台,用于开发和验证新的船舶分类算法。研究基础:该数据集已被用于多种深度学习模型的训练和评估,为船舶识别领域的研究提供了基础。是一个适合用于船舶分类研究的数据集,其多样性和丰富性使其成为深度学习领域中一个有价值的资源。
2025-07-04 13:34:29 80.9MB 机器学习 深度学习 图像处理
1
CFX船舶螺旋桨流动模拟案例
2025-06-30 12:20:10 93.03MB
1
内容概要:本文详细介绍了如何利用MATLAB实现两轮差速小车的路径规划与轨迹跟踪控制。首先建立了小车的运动学模型,描述了小车的位置坐标、航向角、线速度和转向角速度的关系。接着设计了PID控制器,分别实现了仅控制航向角和同时控制航向角与距离的方法。通过仿真展示了小车从起点沿最优路径到达目标点的过程,并讨论了PID参数的选择及其对轨迹稳定性的影响。最后提出了改进方向,如引入更复杂的控制算法和障碍物检测功能。 适合人群:对自动化控制、机器人技术和MATLAB编程感兴趣的工程技术人员、研究人员及高校学生。 使用场景及目标:适用于研究和开发小型移动机器人的路径规划与控制算法,帮助理解和掌握PID控制的基本原理及其应用。目标是使读者能够独立完成类似的小车路径规划仿真实验。 其他说明:文中提供了详细的MATLAB代码示例,便于读者动手实践。同时也指出了仿真中存在的潜在问题及解决方案,如数值不稳定性和参数调节技巧等。
2025-06-02 14:26:56 280KB MATLAB PID控制 轨迹跟踪 自动化控制
1
CSDN Matlab武动乾坤上传的资料均有对应的代码,代码均可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-05-17 12:16:30 10KB matlab
1